(N^2+2.n-6)chia hết cho (n-4)
1. n^3 + 11n chia hết cho 6
2. mn ( m^2 - n^2 ) chia hết cho 3
3. n ( n + 1 )( 2n + 1 ) chia hết cho 6
4. n^2 ( n^4 - 1) chia hết cho 60
5. mn ( m^4 - n^4 ) chia hết cho 30
Câu 1:
(Đk n € Z) Ta có :n^3+11n=n^3-n+12n=n(n^2-1)+12n=(n-1)n(n...
vì n là số nguyên nên (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6;mà 12 lại chia hết cho 6 =>12n cũng chia hết cho 6.
Vậy (n-1)n(n+1)+12n chia hết cho 6 => n^3+11n chia hết cho 6 (đpcm)
Câu 2: Gọi biểu thức trên là a ta có:
A=mn(m²-n²)
= mn(m² - 1 - n² + 1)
= mn [(m-1)(m+1) - (n-1)(n+1)]
= n(m-1)m(m+1) - m(n-1)n(n+1)
{n(m-1)m(m+1) chia hết cho 3 (tính 3 số tự nhiên liên tiếp)
{m(n-1)n(n+1) chia hết cho 3 (tính 3 số tự nhiên liên tiếp)
=> n(m-1)m(m+1) - m(n-1)n(n+1) chia hết cho 3
=> A chia hết cho 3
Câu 3:
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6
Vậy n(n+1)(2n+1) chia hết cho 6
Câu 4: Gọi biểu thức trên là B ta có:
* B=n^2(n^4-1) = n^2(n^2+1)(n^2 - 1)
= n^2(n^2 - 4 + 5)(n^2 - 1) = n^2(n^2 - 1)(n^2 - 4) + n^2(n^2 - 1).5
= (n - 2)(n-1).n^2(n+1)(n+2) + n^2(n^2 - 1).5
(n - 2)(n-1).n^2(n+1)(n+2) chứa tích 5 số liên tiếp chia hết cho 5 và n^2(n^2 - 1).5 cũng chia hết cho 5
=> B chia hết cho 5
*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) là tích 3 số tự nhiên liên tiếp chia hết cho 3
=> B chia hết cho 3
*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) = n^2(n^2+1)(n+1)(n-1)
n chẵn => n^2 chia hết cho 4 => A(n) chia hết cho 4
n lẻ => n +1 và n -1 là 2 số chẵn => (n+1)(n-1) chia hết cho 4 => A(n) chia hết cho 4
=> B chia hết cho 4
Vì: 3,4,5 nguyên tố cùng nhau => Bchia hết cho 3.4.5 = 60
Câu 5: Gọi biểu thức trên là C ta có:
Đặt C = mn(m4-n4) = mn(m2-n2)(m2+n2)=mn(m-n)(m+n)(m2+n2)
*)Nếu 1 trong 2 số m,n chia hết cho 2 suy ra C chia hết cho 2.
Nếu k0 thì m,n lẻ suy ra m-n chia hết cho 2 suy ra C chia hết cho 2.
Vậy C chia hết cho 2
*)Nếu m,n có 1 số chia hết cho 3 => C chia hết cho 3.
Nếu k0: +)m,n đồng dư mod 3 => m-n chia hết cho 3 =>C chia hết cho 3
+)m,n chia 3 dư lần lượt là 1, 2 =>m+n chia hết cho 3 => C chia hết cho 3.
Vậy C chia hết cho 3.
*)Nếu m,n có 1 số chia hết cho 5 => C chia hết cho 5
Nếu k0 +)m,n đồng dư mod 5 =>m-n chia hết cho 5
+)m,n có số dư mod 5 là (1,2), (1,3), (1,4), (2,3), (2,4),(3,4)
Các trường hợp (1,4),(2,3) =>m+n chia hết cho5
Còn lại m2+n2 chai hết cho 5 (do 1 số chính phương chia 5 dư 0,1,4 nên bạn có thể tự thử các trường hợp còn lại)
Vậy C chia hết cho 5.
Từ kết quả trên => C chia hết cho 30( đpcm).
Tìm n thuộc N
1. n+7 chia hết cho n-2
2. 46-2n chia hết cho n
3. 3n+15 chia hết cho n+1
4. 8n-7 chia hết cho 4n +1
5.n2+2n+6 chia hết cho n+2
6. n2+2n+6 chia hết cho n+4
7. 7n chia hết cho n-3
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
tìm n
n+5 chia hết cho n
n+8 chia hết cho n +2
3n+4 chia hết cho n
3n+2 chia hết cho n-1
n+6 chia hết n -1
12-n chia hết cho 8-n
n2+6 chia hết cho n2+1
n+8 chia hết cho n+2
=> (n+2) - 10 chia hết cho n+2
=> n+2 chia hết cho n+2
=> 10 chia hết cho n+2
=> n+2 thuộc Ư(10) = { 1,2,5,10,-1,-2,-5,-10}
Ta xét
Với n+2 = 1 thì n=-1
Với n+2 = 2 thì n=0
Với n+1 = 5 thì n=4
Với n+2 = 10 thì n=8
Với n+2 = -1 thì n=-3
Với n+2 = -2 thì n=-4
Với n+2 = -5 thì n=-7
Với n+2 = -10 thì n=-12
a) ta có: n+5 chia hết cho n
mà n chia hết cho n
=> 5 chia hết cho n
=> n thuộc Ư(5)= (5;-5;1;-1)
KL: n = ( 5;-5;1;-1)
b) ta có: n+8 chia hết cho n+2
=> n + 2 + 6 chia hết cho n+2
mà n+2 chia hết cho n+2
=> 6 chia hết cho n+2
=> n+2 thuộc Ư(6)=(6;-6;3;-3;2;-2;1;-1)
nếu n+2 = 6 => n = 4
n+2 = - 6 => n = - 8
n+ 2 = 3 => n = 1
n+2 = - 3 => n = - 5
n + 2 = 2=> n = 0
n+ 2= -2 => n= - 4
n+2 = 1 => n = -1
n + 2 = -1 => n = - 3
KL: n = ( 4;-8;1;-5, 0;-4;-1;-3)
các phần còn lại, bn lm tương tự nha!
3n+4 chia hết cho n
=> 3n chia hết cho n
=> 4 chia hết cho n
=> n thuộc Ư(4) = {1,2,4,-1,-2,-4}
Vậy n = {1,2,3,-1,-2,-4}
Tìm số tự nhiên n :
1/ n+6 chia hết cho n
2/ n-8 chia hết cho n
3/ 3 nhân n +13 chia hết cho n
4/ 5-2 nhân n chia hết cho n
5/ n+8 chia hết cho n+1
6/ n+10 chia hết cho n+2
7/ 2 nhân n+3 chia hết cho n-2
8/ 3 nhân n+1 chia hết cho 1+2 nhân n
1) n-6 chia hết cho n-1
2) 3.n+2 chia hết cho n-1
3) 3.n+24 chia hết cho n-4
4) n mũ 2+5 chia hết cho n+1
1)[n-6-n+1]chia hết cho n -1
suy ra -5 chia hết cho n-1
đến đây tự giải nhé
các phần sau tương tự
nhớ bấm đúng cho mình nha
bạn ơi nk chưa hiểu rõ
hay kết bạn rùi giải rõ giùm mk nha
cảm ơn bạn rất nhiều
2^9-1 chia hết cho 73
5^6-10^4 chia hết cho 9
(n+6)^2-(n-6)^2 chia hết cho 24
n^3+3n^2-n-3 chia hết cho 48 với n là số lẻ
a/ 29 - 1 = \(\left(2^3\right)^3\) - 1 = 83 - 1 = (8-1)( 82 +8.1 + 1) = (8-1).73 \(⋮\) 73
b/ 56 - 104 = 54(52 - 24) = 54 (25 - 16) = 54 .9 chia hết cho 9
c, (n+6)2-(n-6)2=(n+6-n+6)(n+6+n-6)(hđt số 3
=12 .2n=24n
Tìm các số tự nhiên n, biết:
a) 7n chia hết cho n+4
b) n^2+2n+6 chia hết cho n+4
c) n^2+n+1 chia hết cho n+1
a) 7n chia hết cho n+4
=> 7(n+4) -28 chia hết cho n+4
=> 28 chia hết cho n+4 ( Vì : 7(n+4) chia hết cho n+4 với mọi STN n )
=> n+4 thuộc Ư(27)= { \(\pm1;\pm3;\pm9;\pm27\) }
Đến đây bạn lập bảng gt rồi tìm ra x nhé.
b) n^2 + 2n + 6 chia hết cho n +4
=> n(n+4)-2(n+4)+14 chia hết cho n + 4
=> (n+4)(n-2)+14 chia hết cho n + 4
=> 14 chia hết cho n + 4 ( Vì : (n+4)(n-2) chia hết cho n + 4 với mọi STN n )
=> n+4 thuộc Ư(14)= {\(\pm1;\pm2;\pm7;\pm14\)}
Lập bảng giá trị rồi tìm ra x nha bạn
n^2 + n + 1 chia hết cho n + 1
=> n(n+1)+1 chia hết cho n + 1
=> 1 chia hết cho n + 1
=> n+1 thuộc Ư(1)={1;-1}
=> n thuộc { -2;0 }
CMR:
3^n+3 + 2^n+3 + 3^n+1 + 2^n+2 chia hết cho 6
7^n+4-7^n chia hết cho 30
6^2n + 3^n+2+3^n chia hết cho 11
25^7 + 5^13 chia hết cho 30
3n+2-2n+2+3n-2n
= ( 3n+2+3n)-(2n+2+2n)
= 3n(32+1)-2n(22+1)
= 3n.10-2n-1.10=10(3n-2n-1) chia het cho 10
b) 7n+4-7n=7n(74-1)=7n.2400
Do 2400 chia hết cho 30=>7n.2400 chia hết cho 30
Vậy 7n+4-7n chia hết cho 30 với mọi n thộc N
c) 62n+3n+2+3n=22n.3n+3n(32+1)
=22n.32n+3n.11 chia het cho 11
đ) câu hỏi tương tự nhé
l-i-k-e mình nhé
Tìm n thuộc N sao cho
2 n + 7 chia hết cho n +1
2 n + 1 chia hết cho 6 - n
4 n + 3 chia hết cho 2 n + 6
n + 3 chia hết cho n2 - 7
=> (n + 3)(n - 3) chia hết cho n2 - 7
=> n2 - 9 chia hết cho n2 - 7
=> n2 - 7 - 2 chia hết cho n2 - 7
Mà n2 - 7 chia hết cho n2 - 7
=> 2 chia hết cho n2 - 7
=> n2 - 7 ∈Ư(2) = {-1;1;-2;2}
Ta có bảng sau:
n2 - 7 | -1 | 1 | -2 | 2 |
n2 | 6 | 8 | 5 | 9 |
n | loại (vì n thuộc Z) | loại (vì n thuộc Z) | loại (vì n thuộc Z) | -3;3 |
Thử lại | loại | loại | loại | 2 TH thỏa mãn |
Vậy n ∈{3;-3}
CMR:
a)8^7-2^18 chia hết cho 14
b)10^6-5^7 chia hết cho 59
c)313^5*299-313^6*35 chia hết cho 7
d)3^n+2-2^n+2+3^n-2^n chia hết cho 10
e)3^n+3+2^n+3+3^n+1+2^n+2 chia hết cho 6
f)7^6+7^5-7^4 chia hết cho 11