Những câu hỏi liên quan
PN
Xem chi tiết
LD
19 tháng 8 2020 lúc 8:34

Bài 1.

2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2nn + 6n

= 6n \(⋮6\forall n\inℤ\)( đpcm )

Bài 2.

P = ( m2 - 2m + 4 )( m + 2 ) - m3 + ( m + 3 )( m - 3 ) - m2 - 18

P = m3 + 8 - m3 + m2 - 9 - m2 - 18

P = 8 - 9 - 18 = -19

=> P không phụ thuộc vào biến M ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
VU
Xem chi tiết
CL
5 tháng 9 2017 lúc 19:47

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

Bình luận (0)
VU
5 tháng 9 2017 lúc 20:21

. Huhu T^T mong sẽ có ai đó giúp mình "((

Bình luận (0)
SS
Xem chi tiết
NA
Xem chi tiết
TP
25 tháng 11 2017 lúc 20:03

Hình như tui làm đc nhưng ko biết có đúng không. 

Bình luận (0)
NN
Xem chi tiết
HN
23 tháng 11 2016 lúc 22:45

Ta biến đổi như sau : \(mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]=mn\left[\left(m-1\right)\left(m+1\right)-\left(n-1\right)\left(n+1\right)\right]\)

\(=n.\left(m-1\right).m.\left(m+1\right)-m.\left(n-1\right).n.\left(n+1\right)\)

Vì \(\left(m-1\right).m.\left(m+1\right)\) và \(\left(n-1\right).n.\left(n+1\right)\) là các tích của ba số nguyên liên tiếp

nên chia hết cho cả 2 và 3 . Mà \(\left(2,3\right)=1\) nên các tích này chia hết cho 6.

Từ đó suy ra điều phải chứng minh :)

Bình luận (0)
AN
23 tháng 11 2016 lúc 22:46

Ta có 

A = mn(m2 - n2) = mn(m - n)(m + n)

Ta chứng minh A chia hết cho 2

Với m,n có 1 số chẵn thì A chia hết cho 2

Với m,n đều là lẻ thì (m - n) chia hết cho 2

=> A chia hết cho 2 (1)

Chứng minh chia hết cho 3

Với m,n có 1 số chia hết cho 3 thì  A chia hết cho 3

Với m,n cùng chia 3 dư 1 hoặc dư 2 thì (m - n) chia hết cho 3

Với m chia 3 dư 1 n chia 3 dư 2 (hoặc ngược lại thì (m + n) chia hết cho 3

=> A chia hết cho 3 (2)

Từ  (1) và (2) kết hợp với 2 va 3 nguyên tố cùng nhau thì ta có A chia hết cho 6

Bình luận (0)
NN
23 tháng 11 2016 lúc 22:49

ai cũng có cách giải hay hết cảm ơn nhiều :))

Bình luận (0)
VM
Xem chi tiết
NA
15 tháng 12 2018 lúc 22:33

1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh

Bình luận (0)
NA
15 tháng 12 2018 lúc 23:27

2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.

Bình luận (0)
PD
Xem chi tiết
SG
5 tháng 9 2016 lúc 22:49

Do m2; n2 là số chính phương nên m2; n2 chia 3 chỉ có thể dư 0 hoặc 1

+ Nếu m2; n2 chia 3 cùng dư 1 thì m2 + n2 chia 3 dư 2 (trái với đề bài)

+ Nếu trong 2 số m2; n2 có 1 số chia hết cho 3; 1 số chia 3 dư 1 thì m2 + n2 chia 3 dư 1 (trái với đề bài)

=> m2; n2 cùng chia hết cho 3

Mà 3 là số nguyên tố => m chia hết cho 3; n chia hết cho 3 (đpcm)

Bình luận (0)
ND
5 tháng 9 2016 lúc 22:56

Do m2;n2 là số chính phương nên m2;n2 chia hết cho 3 chỉ có thể dư 0 hoặc 1.

+ Nếu m2;n2 chia 3 cùng dư 1 thì m2+n2 chia 3 dư 2 (trái với đề bài có - vô lí)

+ Nếu trong 2 xố m2; n2 có  1 số chia hết cho 3; 1 số chia 3 dư 1 thì m2+n2 chia 3 dư 1 (trái đề bài- vô lí)

=> m2;n2 cùng chia hết cho 3

Mà 3 là số nguyên tố=> m chia hết cho 3; n chia hết cho 3  (điều phải chứng minh)

Bình luận (0)
SG
5 tháng 9 2016 lúc 23:04

#Đạt: cái óc sinh ra để lm j, sao ko tự lm mà ik copy bài ng` khác

Bình luận (0)
PK
Xem chi tiết
PK
Xem chi tiết
PH
Xem chi tiết