Tìm GTNN của biểu thức \(G=\frac{9x}{2-x}+\frac{2}{x}\)
Tìm GTNN của các biểu thức sau:
1) G= $\frac{x^2}{x-1}$ với x>1
2) H= x+$\frac{1}{x}$ với x$\geq$2
3) K= $x^{2}$ +$\frac{1}{x}$ với x $\geq$3
Lời giải:
1. Áp dụng BĐT Cô-si
$G=\frac{x^2}{x-1}=\frac{(x^2-1)+1}{x-1}=x+1+\frac{1}{x-1}$
$=(x-1)+\frac{1}{x-1}+2$
$\geq 2\sqrt{(x-1).\frac{1}{x-1}}+2=2+2=4$
Vậy $G_{\min}=4$. Giá trị này đạt tại $x-1=\frac{1}{x-1}$
$\Leftrightarrow x=0$ hoặc $x=2$
2.
Áp dụng BĐT Cô-si:
$H=x+\frac{1}{x}=(\frac{x}{4}+\frac{1}{x})+\frac{3}{4}x$
$\geq 2\sqrt{\frac{x}{4}.\frac{1}{x}}+\frac{3}{4}x$
$=1+\frac{3}{4}x\geq 1+\frac{3}{4}.2=\frac{5}{2}$ (do $x\geq 2$)
Vậy $H_{\min}=\frac{5}{2}$. Giá trị này đạt tại $x=2$
3.
Áp dụng BĐT Cô-si:
$K=x^2+\frac{1}{x}=(\frac{x^2}{54}+\frac{1}{2x}+\frac{1}{2x})+\frac{53}{54}x^2$
$\geq 3\sqrt[3]{\frac{x^2}{54}.\frac{1}{2x}.\frac{1}{2x}}+\frac{53}{54}x^2$
$=\frac{1}{2}+\frac{53}{54}x^2\geq \frac{1}{2}+\frac{53}{54}.3^2=\frac{28}{3}$ (do $x\geq 3$)
Vậy $K_{\min}=\frac{28}{3}$ khi $x=3$
Cho x > 0. Tìm GTNN của biểu thức H = \(9x^2-5x+\frac{1}{9x}+10\)
Cho biểu thức: B=\(\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)
a)Chứng minh B=\(\frac{x^2+x+1}{x-2}\)
b)Tính giá trị B biết (x+5)2-9x-45=0
c)Tìm x nguyên để B nhận gtri nguyên
d) Tìm x để B=\(\frac{-3}{4}\)
e)tÌM x để B<0
f) Tìm GTLN của M biết M=\(\frac{2}{x-2}:B\)
g) Với x>2 tìm GTNN của B
a, \(B=\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)
\(=\left(\frac{9-3x}{\left(x-1\right)\left(x+5\right)}+\frac{\left(x+5\right)^2}{\left(x-1\right)\left(x+5\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+5\right)}\right):\frac{7\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}.\frac{\left(x-1\right)\left(x+1\right)}{7\left(x-2\right)}\)
\(=\frac{35+7x}{x+5}\frac{x+1}{7\left(x-2\right)}=\frac{7\left(x+5\right)\left(x+1\right)}{7\left(x+5\right)\left(x-2\right)}=\frac{x+1}{x-2}\)
b, Ta có : \(\left(x+5\right)^2-9x-45=0\)
\(\Leftrightarrow x^2+10x+25-9x-45=0\Leftrightarrow x^2+x-20=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
TH1 : Thay x = 4 vào biểu thức ta được : \(\frac{4+1}{4-2}=\frac{5}{2}\)
TH2 : THay x = 5 vào biểu thức ta được : \(\frac{5+1}{5-2}=\frac{6}{3}=2\)
c, Để B nhận giá trị nguyên khi \(\frac{x+1}{x-2}\inℤ\Rightarrow x-2+3⋮x-2\)
\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
d, Ta có : \(B=-\frac{3}{4}\Rightarrow\frac{x+1}{x-2}=-\frac{3}{4}\)ĐK : \(x\ne2\)
\(\Rightarrow4x+4=-3x+6\Leftrightarrow7x=2\Leftrightarrow x=\frac{2}{7}\)( tmđk )
e, Ta có B < 0 hay \(\frac{x+1}{x-2}< 0\)
TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)( ktm )
TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2}\)
bạn ơi đề bài có sai không :)) sao mình với Tú ra cùng 1 kết quả mà đề bài cho khác vậy :v xem lại đề bài đi bạn
g) \(B=\frac{x^2+x+1}{x-2}=\frac{x^2-2x+3x-6+7}{x-2}=\frac{x\left(x-2\right)+3\left(x-2\right)+7}{x-2}=x+3+\frac{7}{x-2}\)
\(=\left[\left(x-2\right)+\frac{7}{x-2}\right]+5\)
Vì x > 2, áp dụng bất đẳng thức AM-GM ta có :
\(\left(x-2\right)+\frac{7}{x-2}\ge2\sqrt{\left(x-2\right)\cdot\frac{7}{x-2}}=2\sqrt{7}\)
=> \(\left[\left(x-2\right)+\frac{7}{x-2}\right]+5\ge2\sqrt{7}+5\)
Đẳng thức xảy ra <=> ( x - 2 ) = 7/(x-2) [ bạn tự giải nốt ]
Vậy ...
Cho x>0, y>0, z>0 và x+y+z=1. Tìm GTNN của biểu thức \(\frac{x}{1+9y^2}+\frac{y}{1+9z^2}+\frac{z}{1+9x^2}\)
Tìm GTNN của biểu thức :
y = \(\frac{x}{2}+\frac{18}{x}\) , x > 0
\(y=\dfrac{x}{2}+\dfrac{18}{x}\ge2\sqrt{\dfrac{18x}{2x}}=6\)
\(y_{min}=6\) khi \(x=6\)
Tìm GTNN của các biểu thức sau:
G = \(\frac{x^2-1}{x^2+1}\)
\(G=\frac{x^2-1}{x^2+1}=\frac{x^2+1-2}{x^2+1}\)
\(=1-\frac{2}{x^2+1}\)
Ta có: \(x^2\ge0\)
\(\Rightarrow x^2+1\ge1\)
\(\Rightarrow\frac{2}{x^2+1}\le2\)
\(\Rightarrow-\frac{2}{x^2+1}\ge-2\)
\(\Rightarrow1-\frac{2}{x^2+1}\ge-1\)
Vậy \(G_{min}=-1\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Cho x là số thực dương. Tìm GTNN của biểu thức \(A=9x+\frac{1}{9x}-\frac{6\sqrt{x}+8}{x+1}+2020\)
P/S: Các bạn và thầy cô giúp mình vs ạ...!
Tìm GTNN của biểu thức
d, \(D=|x+5|+|x+17|\)
g, \(G=|x+\frac{1}{2}|+|x+\frac{1}{3}|+|x+\frac{1}{4}|\)
1. Cho biểu thức P = \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\) (với x > 0)
a) Rút gọn biểu thức P
b) Cho x=100, tính giá trị của P
c) Tìm GTNN của P
2. Cho biểu thức A=\(\left(\frac{x+\sqrt{9x}-1}{x+\sqrt{x}-2}-\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\) (với x \(\ge\) 0, x \(\ne\) 1)
a) Rút gọn biểu thức A
b) Tìm số tự nhiên x để \(\frac{1}{A}\) là số tự nhiên