Theo bất đẳng thức Cauchy :
\(G=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x\left(2-x\right)}{\left(2-x\right)x}}+1=7\)
Đẳng thức xảy ra khi ...
tự tìm dấu = :))
Trả lời:
\(G=\frac{9}{2-x}+\frac{2}{x}\)\(\left(ĐK:0< x< 2\right)\)
\(G=\frac{9}{2-x}+\frac{2-x+x}{x}\)
\(G=\frac{9}{2-x}+\frac{2-x}{x}+1\)
Áp dụng BĐT Cauchy ta có:
\(\frac{9x}{2-x}+\frac{2-x}{x}\ge2.\sqrt{\frac{9x}{2-x}\times\frac{2-x}{x}}=2.3=6\)
\(\Leftrightarrow\frac{9}{2-x}+\frac{2-x}{x}+1\ge6+1=7\)
Hay \(G\ge7\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{9x}{2-x}=\frac{2-x}{x}\)
\(\Leftrightarrow\left(2-x\right)^2=9x^2=\left(\pm3x\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2-x=3x\\2-x=-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2=4x\\2=-2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(TM\right)\\x=-1\left(L\right)\end{cases}}\)
Vậy \(G_{min}=7\Leftrightarrow x=\frac{1}{2}\)