Những câu hỏi liên quan
SM
Xem chi tiết
KN
Xem chi tiết
VA
21 tháng 11 2015 lúc 12:16

Hôm nay thứ 7 rồi

Dê !!!? - Khỏi làm ???!

Bình luận (0)
NQ
2 tháng 7 2017 lúc 20:10

B1 a, Có n lẻ nên n = 2k+1(k E N)

Khi đó: n^2 + 7 = (2k+1)^2 +7 

= 4k^2 + 4k + 8

= 4k(k+1) +8 

Ta thấy k và k+1 là 2 số tự nhiên liên tiếp nên có ít nhất 1 số chia hết cho 2

=> k(k+1) chia hết cho 2 <=> 4k(k+1) chia hết cho 8

Mà 8 chia hết cho 8 <=> n^2 + 7 chia hết cho 8

Bình luận (0)
PA
Xem chi tiết
NC
Xem chi tiết
NT
26 tháng 11 2023 lúc 8:46

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

Bình luận (0)
H24
Xem chi tiết
NM
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
TP
30 tháng 9 2018 lúc 7:28

\(n^4-1\)

\(=\left(n^2\right)^2-1^2\)

\(=\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Vì n lẻ \(\Rightarrow\hept{\begin{cases}n-1\text{chẵn}\\n+1\text{chẵn}\\n^2+1\text{chẵn}\Rightarrow n^2+1⋮2\left(1\right)\end{cases}}\)

mặt khác n - 1 và n + 1 là 2 số chẵn liên tiếp \(\Rightarrow\left(n-1\right)\left(n+1\right)⋮4\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮8\left(đpcm\right)\)

Bình luận (0)
HF
30 tháng 9 2018 lúc 7:33

Phân tích thành nhân tử:

\(n^4-1=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Vì n là số tự nhiên lẻ nên n = 2k + 1 với k là số tự nhiên

Khi đó:

 \(n^4-1=\left(2k-1+1\right)\left(2k+1+1\right)\left(n^2+1\right)\)

\(=2k\left(2k+2\right)\left(n^2+1\right)\)

\(=2k.2.\left(k+1\right)\left(n^2+1\right)\)

\(=4k\left(k+1\right)\left(n^2+1\right)\)

Vì k(k+1) là tích hay số tự nhiên liên tiếp nên k(k+1) chia hết cho 2  \(\Rightarrow4k\left(k+1\right)⋮8\)

                                                                                                            \(\Rightarrow4k\left(k+1\right)\left(n^2+1\right)⋮8\)

                                                                                                     hay  \(n^4-1⋮8\)(với n là số tự nhiên lẻ)

Ta có điều phải chứng minh.

Bình luận (0)
NL
Xem chi tiết