Cho n là số tự nhiên lẻ
CMR A=\(n^2+4n+5\) không chia hết cho 8
Giúp mình với ạ
Chứng minh rằng mọi n là số tự nhiên lẻ thì số : A = n2 + 4n + 5 không chia hết cho 8
Giúp mình bài này nha !!!
Đây là toán lớp 10, bạn nào làm được làm giúp mình với, chứng minh xuôi ngược luôn nha, làm ơn giúp mình trước thứ 7
Bài 1: Cho n là số tự nhiên
a) n lẻ <=> (n^2 + 7 ) chia hết cho 8
b) n chẵn <=> ( n^3 - 4n ) chia hết cho 48
c) n lẻ <=> ( n^2 - 4n +3 ) chia hết cho 8
d) n lẻ <=> (n^2 + 4n + 5 ) không chia hết cho 8
Bài 2: chứng minh rằng 1 trong 2 phương trình sau có nghiệm
x^2 - 2mx - 2m + 2 = 0 (1)
x^2 + ( m - 1)x + m - 1 = 0 (2)
Hôm nay thứ 7 rồi
Dê !!!? - Khỏi làm ???!
B1 a, Có n lẻ nên n = 2k+1(k E N)
Khi đó: n^2 + 7 = (2k+1)^2 +7
= 4k^2 + 4k + 8
= 4k(k+1) +8
Ta thấy k và k+1 là 2 số tự nhiên liên tiếp nên có ít nhất 1 số chia hết cho 2
=> k(k+1) chia hết cho 2 <=> 4k(k+1) chia hết cho 8
Mà 8 chia hết cho 8 <=> n^2 + 7 chia hết cho 8
bài 1 cho tổng A =71+72+73 +...+ 74k ( trong đó k là số tự nhiên cho trước chia hết cho 400 )
CMR TỔNG A chia hết cho 400
bài 2 : CMR n2 +4n +5 không chia hết cho 8 với mọi n lẻ
a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn
b: Đặt \(A=n^3+3n^2-n-3\)
\(=\left(n^3+3n^2\right)-\left(n+3\right)\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
n lẻ nên n=2k+1
=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)
=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)
c:
d: Đặt \(B=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)
\(=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n-4\right)\left(n^3-4n\right)\)
\(=n\left(n-4\right)\left(n^2-4\right)\)
\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)
n chẵn và n>=4 nên n=2k
B=n(n-4)(n-2)(n+2)
\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)
\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)
Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp
nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)
=>B chia hết cho \(16\cdot24=384\)
chứng minh rằng với mọi n tự nhiên
a) n2 - 8 không chia hết cho 3
b) n2 +4n +5 không chia hết cho 8 (n lẻ).
Chứng tỏ rằng: nếu n là một số tự nhiên lẻ thì tổng T=n2+4n+5 không chia hết cho 8
CMR
a) (n+3)^2-(n-1)^2 chia hết cho 8 với nE Z
b) n^2+4n+3 chia hết cho 8 với n lẻ
Cần gấp ạ Hy vọng mọi người giúp cho
CMR: \(n^4-1\)chia hết cho 8 với n là số tự nhiên lẻ
GIÚP MK VS Ạ
\(n^4-1\)
\(=\left(n^2\right)^2-1^2\)
\(=\left(n^2-1\right)\left(n^2+1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Vì n lẻ \(\Rightarrow\hept{\begin{cases}n-1\text{chẵn}\\n+1\text{chẵn}\\n^2+1\text{chẵn}\Rightarrow n^2+1⋮2\left(1\right)\end{cases}}\)
mặt khác n - 1 và n + 1 là 2 số chẵn liên tiếp \(\Rightarrow\left(n-1\right)\left(n+1\right)⋮4\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮8\left(đpcm\right)\)
Phân tích thành nhân tử:
\(n^4-1=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Vì n là số tự nhiên lẻ nên n = 2k + 1 với k là số tự nhiên
Khi đó:
\(n^4-1=\left(2k-1+1\right)\left(2k+1+1\right)\left(n^2+1\right)\)
\(=2k\left(2k+2\right)\left(n^2+1\right)\)
\(=2k.2.\left(k+1\right)\left(n^2+1\right)\)
\(=4k\left(k+1\right)\left(n^2+1\right)\)
Vì k(k+1) là tích hay số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 \(\Rightarrow4k\left(k+1\right)⋮8\)
\(\Rightarrow4k\left(k+1\right)\left(n^2+1\right)⋮8\)
hay \(n^4-1⋮8\)(với n là số tự nhiên lẻ)
Ta có điều phải chứng minh.
Chứng tỏ n là số tự nhiên lẻ thì T=n^2 +4n+5 ko chia hết cho 8