Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LY
Xem chi tiết
H24
10 tháng 12 2020 lúc 20:40

A=32019+1+3+32+33+...+32018

⇒A=1+3+32+...+32018+32019 

⇒3A=3×(1+3+3^2+3^3+....+3^2019)

3A=3+3^2+3^3+....+3^2020

3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)

2A= 3^2020-1

⇒ A =( 3^2020-1):2

Bình luận (0)

A=32019+1+3+32+33+...+32018

⇒A=1+3+32+...+32018+32019 

⇒3A=3×(1+3+3^2+3^3+....+3^2019)

⇒3A=3+3^2+3^3+....+3^2020

⇒3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)

⇒2A= 3^2020-1

⇒ A =( 3^2020-1):2

Bình luận (0)
H24
Xem chi tiết
SP
Xem chi tiết
VN
Xem chi tiết
NT
24 tháng 12 2021 lúc 20:30

\(a,A=3+3^2+3^3+3^4+...+3^{100}\\ 3A=3^2+3^3+3^4+3^5+3^{101}\\ 3A-A=2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}=3^{4.25+1}\\ \Rightarrow n=25\)

 

Bình luận (0)
SK
Xem chi tiết
KS
8 tháng 2 2022 lúc 20:24

\(A=3+3^2+3^3+...+3^{2012}\\ A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\\ A=120+...+3^{2008}.120\\ A=120.\left(1+...+3^{2008}\right)⋮120\)

Bình luận (2)
HN
8 tháng 2 2022 lúc 20:24

undefined

Bình luận (1)
NT
8 tháng 2 2022 lúc 20:31

\(=\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)

\(=120+...+3^{2008}.120=120\left(1+...+3^{2008}\right)⋮120\)

Bình luận (0)
TN
Xem chi tiết
NP
3 tháng 3 2019 lúc 15:27

ta có: \(\frac{31+32+35}{34}=\frac{31}{34}+\frac{32}{34}+\frac{35}{34}.\)

mà \(\frac{31}{32}>\frac{31}{34};\frac{32}{33}>\frac{32}{34}\)

\(\Rightarrow\frac{31}{32}+\frac{32}{33}+\frac{35}{34}>\frac{31}{34}+\frac{32}{34}+\frac{35}{34}=\frac{31+32+35}{34}\)

Bình luận (0)
NT
Xem chi tiết
LT
Xem chi tiết
MH
14 tháng 10 2021 lúc 19:47

\(A=1+3+3^2+3^3+...+3^{2018}+3^{2019}\)

\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{2018}\left(1+3\right)\)

\(=\left(1+3\right)\left(1+3^2+...+3^{2018}\right)\)

\(=4\left(1+3^2+...+3^{2018}\right)\) ⋮4

⇒A⋮4

Bình luận (0)
MS
Xem chi tiết
H24
18 tháng 11 2021 lúc 17:41

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2021}\\ \Rightarrow3A-A=3^2+3^3+...+3^{2021}-3-3^2-3^3-...-3^{2020}\\ \Rightarrow2A=3^{2021}-3\\ \Rightarrow2A+3=3^{2021}=3^x\\ \Rightarrow x=2021\)

Bình luận (0)
CP
Xem chi tiết
NT
8 tháng 11 2021 lúc 21:53

\(A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{2018}\left(1+3\right)\)

\(=4\left(1+3^2+...+3^{2018}\right)⋮4\)

Bình luận (0)