chứng minh với mọi số tự nhiên n thì 10n+3 và 15n+4 thì cà 2 số nguyên tố cùng nhau
Chứng minh rằng : với mọi số tự nhiên n thì 15n + 1 và 20n + 3 là số nguyên tố cùng nhau
Bài này dễ nhưng trình bày hơi dài
a) chứng minh rằng khi nla số tự nhiên khác 0 thì n+1 là 2 số nguyên tố cùng nhau.
b)chứng minh rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau :2n+3 va 4n+8
e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1
còn n+1-n=1 nên (n,n+1)=1
a) chứng tỏ rằng với mọi số tự nhiên n thì tích (n+4) (n+5) chia hết cho 2
b) chứng minh n+2012 và n+2013 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n.
Nếu n=2k (k thuộc N) thì n+5=2k+5 chia hết cho 2
Nếu n=2k+1 (k thuộc N) thì n+4 =2k+5 chia hết cho 2
Vậy (n+4)(n+5) chia hết cho 2
Câu a
Nếu n=2k thì n+4 = 2k+4 chia hết cho 2 => (n+4)(n+5) chia hết cho 2
Nếu n=2k+1 thì n+5=2k+5+1=2k+6 chia hết cho 2=> (n+4)(n+5) chia hết cho hai
Vậy (n+4)(n+5) chia hết cho 2
Câu b
Ta có n+2012 và n+2013 là hai số tự nhiên liên tiếp
Gọi ƯCLN(n+2012; n+2013)=d
Vì ƯCLN(n+2012;n+2013)=d
=> n+2012 chia hết cho d, n+2013 chia hết cho d
Mà n+2013-n+2012=1=> d=1
Vậy n+2012 và n+2013 là 2 số nguyên tố cùng nhau
Chứng minh rằng: với mọi số tự nhiên n thì 2n+1 và 6n+4 là 2 số nguyên tố cùng nhau
Gọi \(d\)là ước chung lớn nhất của 2n+1 và 6n+4(\(d\in\)N*)
Khi đó \(\hept{\begin{cases}2n+1⋮d\\6n+4⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3\cdot\left(2n+1\right)⋮d\\6n+4⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
\(\Leftrightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Leftrightarrow1⋮d\Rightarrow d=1\)(Vì \(d\in\)N*)
\(\Rightarrowđpcm\)
amazing goodjob
a, Tìm số tự nhiên n sao cho(4-n)chia hết cho (n+1)
b, Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3)×(n+6) chia hết cho 2
c, Cho a, b là hai số nguyên tố cùng nhau. Chứng minh rằng a và a+b cũng là 2 số nguyên tố cùng nhau
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
3.
Giả sử $a,a+b$ không phải 2 số nguyên tố cùng nhau. Khi đó, đặt $d=ƯCLN(a,a+b)$. Điều kiện: $d\geq 2$.
$\Rightarrow a\vdots d; a+b\vdots d$
$\Rightarrow (a+b)-a\vdots d$
$\Rightarrow b\vdots d$
Vậy $a\vdots d; b\vdots d\Rightarrow d=ƯC(a,b)$. Mà $d\geq 2$ nên $a,b$ không phải 2 số nguyên tố cùng nhau (trái với đề bài)
Vậy điều giả sử là sai. Tức là $a,a+b$ là 2 số nguyên tố cùng nhau.
chứng minh rằng với mọi số tự nhiên n thì 3n + 1 và 6n + 3 hai
số nguyên tố cùng nhau
\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên n thì 2n+3 và 8n+10 nguyên tố cùng nhau
Vì 2n+3 là số lẻ
và 8n+10 là số chẵn
nên 2n+3 và 8n+10 là hai số nguyên tố cùng nhau
gọi d là ƯCLN(2n+3;8n+10)
để 2n+3 và 8n+10 là 2 số nguyên tố cùng nhau
thi:d=1
⇒2n+3-8n+10⋮d
=8(2n+3)-2(8n+10)=21-20=1⋮d hoặc d=1
vậy ƯCLN(2n+3;8n+10)=1 hay 2n+3 và 8n+10 là 2 số nguyên tố cùng nhau
Chúng minh : Với mọi số tự nhiên n, ta luôn có 15n + 1 và 20n + 3 nguyên tố cùng nhau.
Chứng minh rằng với mọi số tự nhiên n thì 2n + 3 và 4n + 8 là nguyên tố cùng nhau.
Chứng minh rằng với mọi số tự nhiên n thì 2n+3 và 4n+8 là nguyên tố cùng nhau.
Gọi d = UCLN(2n+3,4n+8)
Suy ra 2n+3 ⋮ d và 4n+8 ⋮ d
Ta có 2n+3 ⋮ d => 2.(2n+3) ⋮ d => 4n+6 ⋮ d
Vì 4n+8 ⋮ d và 4n+6 ⋮ d nên (4n+8) – (4n+6) ⋮ d => 2 ⋮ d => d ∈ {1;2}
Vì 2n+3 là số lẻ nên d = 2 là không thỏa mãn. Vậy d = 1
Vậy với mọi số tự nhiên n thì 2n+3 và 4n+8 là nguyên tố cùng nhau