Những câu hỏi liên quan
KN
Xem chi tiết
LT
Xem chi tiết
PH
4 tháng 2 2016 lúc 15:57

n = 2. Lấy VD đi rồi biết

Bình luận (0)
LT
4 tháng 2 2016 lúc 19:27

t cx ra là 2 n ko chắc

Bình luận (0)
NH
Xem chi tiết
NA
Xem chi tiết
NQ
3 tháng 3 2016 lúc 22:29

1 là 2/3

2 là 90 độ

3 là 0 nha bạn k cho mink nha

Bình luận (0)
DH
4 tháng 3 2016 lúc 7:56

c1: 2/3

c2: 90 độ

c3: 2

Đúng thì k cho mình

Bình luận (0)
DL
Xem chi tiết
DK
Xem chi tiết
Y
23 tháng 5 2019 lúc 21:36

+ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

+ \(\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\) \(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

+ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\Rightarrow\frac{a\cdot b}{c\cdot d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{b}=\frac{a^2+c^2}{b^2+d^2}\Rightarrow\frac{a\cdot c}{b\cdot d}=\frac{a^2+c^2}{b^2+d^2}\)

câu cuối lm tương tự

Bình luận (0)
H24
Xem chi tiết
TT
Xem chi tiết
H24
3 tháng 10 2019 lúc 14:53

@Nguyễn Việt Lâm

Bình luận (0)
TT
3 tháng 10 2019 lúc 14:53

https://hoc24.vn/id/2782086

Bình luận (0)
NL
29 tháng 10 2019 lúc 14:03

Ta có đánh giá \(\frac{b+2}{\left(b+1\right)\left(b+5\right)}\ge\frac{3}{4\left(b+2\right)}\)

Thật vậy, BĐT trên tương đương:

\(4\left(b+2\right)^2\ge3\left(b+1\right)\left(b+5\right)\)

\(\Leftrightarrow b^2-2b+1\ge0\Leftrightarrow\left(b-1\right)^2\ge0\) (luôn đúng)

\(\Rightarrow\frac{\left(a+1\right)\left(b+2\right)}{\left(b+1\right)\left(b+5\right)}\ge\frac{3\left(a+1\right)}{4\left(b+2\right)}\)

Tương tự và cộng lại: \(P\ge\frac{3}{4}\left(\frac{a+1}{b+2}+\frac{b+1}{c+2}+\frac{c+1}{a+2}\right)\)

\(P\ge\frac{3}{4}\left(\frac{\left(a+1\right)^2}{ab+2a+b+2}+\frac{\left(b+1\right)^2}{bc+2b+c+2}+\frac{\left(c+1\right)^2}{ca+2c+a+2}\right)\)

\(P\ge\frac{3}{4}.\frac{\left(a+b+c+3\right)^2}{ab+bc+ca+3a+3b+3c+6}\)

\(P\ge\frac{3}{4}.\frac{a^2+b^2+c^2+2ab+2bc+2ca+6a+6b+6c+9}{ab+bc+ca+3a+3b+3c+6}\)

\(P\ge\frac{3}{4}.\frac{2ab+2bc+2ca+6a+6b+6c+12}{ab+bc+ca+3a+3b+3c+6}=\frac{3}{4}.2=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
GD
Xem chi tiết
LD
23 tháng 10 2020 lúc 15:19

Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :

\(VT\ge\frac{\left(2b+3c+2c+3a+2a+3b\right)^2}{a+b+c}\)

\(=\frac{\left(5a+5b+5c\right)^2}{a+b+c}=\frac{\left[5\left(a+b+c\right)\right]^2}{a+b+c}\)

\(=\frac{25\left(a+b+c\right)^2}{a+b+c}=25\left(a+b+c\right)=VP\)

=> đpcm

Đẳng thức xảy ra <=> a = b = c

Bình luận (0)
 Khách vãng lai đã xóa