cho b2=a.c chung minh \(\frac{a}{c}\)=\(\frac{\left(a+2014b\right)^2}{\left(b+2014c\right)^â}\)
Cho a,b,c là các số khác 0 thoả mãn b^2 = ac . Khi đó ta được \(\frac{a}{c}=\left(\frac{a+2014b}{b+2014c}\right)^n\). Tìm n
Cho ba số a,b,c khác 0 sao cho: b^2=ac
Khi đó ta được: \(\frac{a}{c}=\left(\frac{a+2014b}{b+2014c}\right)^n\)
Vậy: n= . . .
Cho a,b,c là các số khác 0 thỏa mãn b2 = ac. Khi đó ta được \(\frac{a}{c}\)=\(\left(\frac{a+2014b}{b+2014c^{ }}\right)^n\). Vậy n=
Cau 1: biet \(\frac{x}{2}=\frac{-y}{3}\) khi do \(\frac{\text{x}+2}{3-y}\)=
cau 2: cho tam giac ABC can tai A. duong cao AH bang 1 nua BC. vay BAC=.......
Cau 3: cho a,b,c la cac so khac 0 thoa man b^2=ac. khi do ta duoc\(\frac{a}{c}=\frac{\left(a+2014b\right)^n}{\left(b+2014c\right)}\)vay n=...........
1 là 2/3
2 là 90 độ
3 là 0 nha bạn k cho mink nha
c1: 2/3
c2: 90 độ
c3: 2
Đúng thì k cho mình
Cho a,b,c đôi một khác nhau
Tính P =\(\frac{ab}{\left(b-c\right)\left(c-â\right)}+\frac{bc}{\left(c-â\right)\left(a-b\right)}+\frac{ca}{\left(a-b\right)\left(b-c\right)}\)
cho \(\frac{a}{b}=\frac{c}{d}\)chung minh rang:
\(\frac{a}{a-b}=\frac{c}{c-d}\) \(\frac{a}{b}=\frac{a+c}{b+d}\) \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
\(\frac{a.b}{c.d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) \(\frac{a.c}{b.d}=\frac{a^2+c^2}{b^2+d^2}\)\(\frac{a.c}{b.d}=\frac{a^2-c^2}{b^2-d^2}\)
+ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
+ \(\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\) \(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
+ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{a\cdot b}{c\cdot d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
\(\Rightarrow\frac{a}{b}\cdot\frac{a}{b}=\frac{a^2+c^2}{b^2+d^2}\Rightarrow\frac{a\cdot c}{b\cdot d}=\frac{a^2+c^2}{b^2+d^2}\)
câu cuối lm tương tự
1)tìm x;y;z biết \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)Hỏi x=...;y=....;z=.....
2)cho a,b,c là các số khác 0 thỏa mãn b2 =ac
Khi đó ta được \(\frac{a}{c}=\left(\frac{a+2014b}{b+2014c}\right)^n\)Vậy n=?
cho cac so thuc duong a b c thoa a^2+b^2+c^2>=3 chung minh
\(\frac{\left(a+1\right)\left(b+2\right)}{\left(b+1\right)\left(b+5\right)}+\frac{\left(b+1\right)\left(c+2\right)}{\left(c+1\right)\left(c+5\right)}+\frac{\left(c+1\right)\left(a+2\right)}{\left(a+1\right)\left(a+5\right)}\ge\frac{3}{2}\)
Ta có đánh giá \(\frac{b+2}{\left(b+1\right)\left(b+5\right)}\ge\frac{3}{4\left(b+2\right)}\)
Thật vậy, BĐT trên tương đương:
\(4\left(b+2\right)^2\ge3\left(b+1\right)\left(b+5\right)\)
\(\Leftrightarrow b^2-2b+1\ge0\Leftrightarrow\left(b-1\right)^2\ge0\) (luôn đúng)
\(\Rightarrow\frac{\left(a+1\right)\left(b+2\right)}{\left(b+1\right)\left(b+5\right)}\ge\frac{3\left(a+1\right)}{4\left(b+2\right)}\)
Tương tự và cộng lại: \(P\ge\frac{3}{4}\left(\frac{a+1}{b+2}+\frac{b+1}{c+2}+\frac{c+1}{a+2}\right)\)
\(P\ge\frac{3}{4}\left(\frac{\left(a+1\right)^2}{ab+2a+b+2}+\frac{\left(b+1\right)^2}{bc+2b+c+2}+\frac{\left(c+1\right)^2}{ca+2c+a+2}\right)\)
\(P\ge\frac{3}{4}.\frac{\left(a+b+c+3\right)^2}{ab+bc+ca+3a+3b+3c+6}\)
\(P\ge\frac{3}{4}.\frac{a^2+b^2+c^2+2ab+2bc+2ca+6a+6b+6c+9}{ab+bc+ca+3a+3b+3c+6}\)
\(P\ge\frac{3}{4}.\frac{2ab+2bc+2ca+6a+6b+6c+12}{ab+bc+ca+3a+3b+3c+6}=\frac{3}{4}.2=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a,b,c > 0
Chung minh rang : \(\frac{\left(2b+3c\right)^2}{a}+\frac{\left(2c+3a\right)^2}{b}+\frac{\left(2a+3b\right)^2}{c}\ge25\left(a+b+c\right)\)
Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :
\(VT\ge\frac{\left(2b+3c+2c+3a+2a+3b\right)^2}{a+b+c}\)
\(=\frac{\left(5a+5b+5c\right)^2}{a+b+c}=\frac{\left[5\left(a+b+c\right)\right]^2}{a+b+c}\)
\(=\frac{25\left(a+b+c\right)^2}{a+b+c}=25\left(a+b+c\right)=VP\)
=> đpcm
Đẳng thức xảy ra <=> a = b = c