Cho tam giác ABC vuông tại A có AB=4cm, AC =3cm. Giải tam giác vuông
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 21: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AH vuông góc với BC(H thuộc BC). Độ dài AH là:
A. cm B. 3cm C. cm D. cm
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Câu 24. Cho tam giác MNP cân tại M, . Khi đó,
A. B. C. D.
Câu 25 : Cho ABC= MNP biết thì:
A. MNP vuông tại P B. MNP vuông tại M
C. MNP vuông tại N D. ABC vuông tại A
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Cho tam giác ABC vuông góc tại A có AB = 3cm, AC=4cm và tam giác MPQ vuông góc tại M có MP = 6cm, PQ= 10cm. Chứng minh tam giác ABC đồng dạng với tam giác MPQ.
Cho tam giác ABC vuông góc tại A có AB = 3cm, AC=4cm và tam giác MPQ vuông góc tại M có MP = 6cm, PQ= 10cm. Chứng minh tam giác ABC đồng dạng với tam giác MPQ.
Áp dụng định lý Py-ta-go đối với ▲MPQ vuông tại M ta có:
\(MQ^2=PQ^2-MP^2\)
\(\Rightarrow MQ=10^2-6^2=100-36=64\)
\(\Rightarrow MQ=8\left(cm\right)\)
Xét ▲ABC và ▲MPQ ta có :
\(\frac{AB}{MP}=\frac{AC}{MQ}=\frac{1}{2}\left(\frac{3}{6}=\frac{4}{8}\right)\)
<A=<M=90
Do đó hai tam giác đồng dạng
- Đâu cần phiền phức vậy! Có hai góc A và M cùng =90 độ lập tỉ số 2 cặp cạnh đã cho độ dài => 2 tỉ số bằng nhau => Tam giác đồng dạng trường hợp c.g.c .
. Tam giác ABC có BC = 3cm ; AC = 5cm ; AB = 4cm. Tam giác ABC vuông tại đâu?
A. Tại B B. Tại C C. Tại A
D. Không phải là tam giác vuông
cho tam giác ABC có AC=4cm, AB=3cm, BC=5cm. Chứng minh tam giác ABC vuông tại A ( nhớ ghi rõ cách giải và lời giải nhó )
Thank you UnU :<<
giả sử tam giác ABC vuông tại A
Theo định lí Pytago ta có : \(BC^2=AB^2+AC^2\Rightarrow25=16+9\)* đúng *
Vậy giả sử là đúng hay tam giác ABC vuông tại A ( đpcm )
Cho tam giác ABC vuông tại A có AB = 4cm, AC=3cm, đường cao AH. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường trong (C) tại điểm thứ 2 là D Cho tam giác ABC vuông tại A có AB=4cm, AC=3cm, đường cao AH. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường trong (C) tại điểm thứ 2 là D. a) Tính độ dài đoạn thẳng AH b) Chứng minh BD là tiếp tuyến của đường tròn (C) c) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA,BD thứ tự E,F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB,BD lần lượt tại P,Q. Chứng minh EF bình phương =4PE.QF
a:\(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)
AH=4*3/5=2,4cm
b: ΔCAD cân tại C
mà CH là đường cao
nên CH là phân giác của góc ACD
Xét ΔCAB và ΔCDB có
CA=CD
góc ACB=góc DCB
CB chung
Do dó: ΔCAB=ΔCDB
=>góc CDB=90 độ
=>BD là tiếp tuyến của (C)
Cho tam giác ABC vuông ở A có AB=3cm;AC=4cm
a, giải tam giác vuông ABC
b, Phân giác góc A cắt BC tại E. Tính BE,CE
c, Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì? Tính Samen
cho tam giác ABC có AB=3CM AC= 5CM BC=4CM
a,,CHỨNG tỏ tam giác abc vuông tại b
Áp dụng đlý Pytago vào tam giác ABC:
AC2=BC2+AB2
52=42+32
52=25
Vậy tam giác ABC là tam giác vuông tại B (dpcm)