Cho tam giác ABC vuông tại A đường cao AH. Tính chu vi của tam giác ABC biết AH= 14cm, HB/HC = 1/4
Giúp mình với ak!!!!
1. Cho tam giác ABC vuông tại A, biết AB/AC=5/7 và đường cao AH=15cm. Tính HB, HC.
2. Cho tam giác ABC vuông tại A, có đường cao AH=14cm và HB/HC=1/4. Tính chu vi tam giác ABC.
1: AB/AC=5/7
=>HB/HC=(AB/AC)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>1225k^2=15^2=225
=>k^2=9/49
=>k=3/7
=>HB=75/7cm; HC=21(cm)
Cho tam giác ABC vuông ở A, đường cao AH. Tính chu vi của tam giác ABC , biết AH=14cm, HB/HC = 1/4
tham khảo của đỗ chí dũng câu hỏi của chi khánh
cho tam giác ABC vuông tại A . Kẻ đường cao AH , tính chu vi tam giác ABC biết AH=14cm , \(\frac{HB}{HC}=\frac{1}{4}\)
cho tam giác abc vuông tại a có đường cao ah. tính bc biết ah=14cm và hb/hc=1/4
Áp dụng hệ thức lượng trong tam giác vuông có:
\(AH^2=BH.BC\Leftrightarrow BH.BC=196\)
\(\dfrac{HB}{HC}=\dfrac{1}{4}\Leftrightarrow HB=\dfrac{HC}{4}\)
\(\Rightarrow HB.HC=\dfrac{HC^2}{4}=196\Leftrightarrow HC=28\)\(\Rightarrow HB=7\)
\(\Rightarrow BC=HB+HC=28+7=35\) (cm)
Vậy BC=35cm.
Cho tam giác ABC vuông ở A,đường cao AH.Tính Chu vi tam giác ABC biết AH =14cm, \(\frac{HB}{HC}=\frac{1}{4}\)
Bài 3.Cho tam giác ABC vuông ở A, đường cao AH, tính chu vi của tam giác ABC. Biết AH = 14 cm, HB/HC=1/4
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow4HB=HC\)
Xét tam giác ABC vuông tại A có đường cao AH:
\(AH^2=BH.HC\)( hệ thức lượng trong tam vuông)
\(\Rightarrow14^2=HB.4HB\Rightarrow HB=7\left(cm\right)\Rightarrow HC=4HB=28\left(cm\right)\Rightarrow BC=HB+HC=35\left(cm\right)\)Xem tam giác ABC vuông tại A có đường cao AH:
\(\left\{{}\begin{matrix}AB^2=HB.BC\\AC^2=HC.BC\end{matrix}\right.\)(Hệ thức lượng trong tam giác vuông)
\(\Rightarrow\left\{{}\begin{matrix}AB^2=7.35\\AC^2=28.35\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\\AC=14\sqrt{5}\end{matrix}\right.\)
Ta có: \(P_{ABC}=AB+AC+BC=7\sqrt{5}+14\sqrt{5}+35=35+21\sqrt{5}\left(cm\right)\)
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow4\cdot HB^2=14^2=196\)
\(\Leftrightarrow HB^2=49\)
\(\Leftrightarrow HB=7\left(cm\right)\)
\(\Leftrightarrow HC=28\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=7\cdot35=245\\AC^2=28\cdot35=980\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\left(cm\right)\\AC=14\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=21\sqrt{5}+35\left(cm\right)\)
tam giác ABC vuông tại A, đường cao AH. Biết HB: HC =2: 3, AH= 24cm. Tính chu vi tam giác ABC
\(HB:HC=2:3\Rightarrow\dfrac{HB}{2}=\dfrac{HC}{3}\Rightarrow HB=\dfrac{2}{3}HC\)
Áp dụng HTL:
\(AH^2=BH\cdot HC\Rightarrow24^2=\dfrac{2}{3}HC^2\Rightarrow HC^2=576\cdot\dfrac{3}{2}=864\\ \Rightarrow HC=12\sqrt{6}\left(cm\right)\\ \Rightarrow HB=\dfrac{2}{3}\cdot12\sqrt{6}=8\sqrt{6}\left(cm\right)\\ \Rightarrow BC=HB+HC=20\sqrt{6}\left(cm\right)\\ \Rightarrow S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot24\cdot20\sqrt{6}=240\sqrt{6}\left(cm^2\right)\)
Cho ∆ABC vuông tại A, đường cao AH. Tính chu vi ∆ABC biết AH=14cm, HB/HC=1/4
Để tính chu vi của tam giác ABC, ta cần biết độ dài các cạnh của tam giác. Tuy nhiên, từ thông tin đã cho, chúng ta chỉ biết đường cao AH có độ dài là 14cm và tỉ lệ HB/HC là 1/4. Để tính chu vi, chúng ta cần thêm thông tin về độ dài các cạnh khác của tam giác.
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>HB*HB*4=14^2=196
=>HB=7(cm)
HC=7*4=28cm
BC=7+28=35cm
\(AB=\sqrt{7\cdot35}=7\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{28\cdot35}=14\sqrt{5}\left(cm\right)\)
\(C_{ABC}=7\sqrt{5}+14\sqrt{5}+35=21\sqrt{5}+35\left(cm\right)\)
Ta có :
\(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow\dfrac{HB}{1}=\dfrac{HC}{4}=\dfrac{HB.HC}{1.4}=\dfrac{AH^2}{4}=\dfrac{196}{4}=49\)
\(\Rightarrow\left\{{}\begin{matrix}HB=49.1=49\left(cm\right)\\HC=49.4=196\left(cm\right)\end{matrix}\right.\)
\(\Rightarrow BC=HB+HC=49+196=245\left(cm\right)\)
\(AB^2=BH.BC=49.245=49.49.5\)
\(\Rightarrow AB=49\sqrt[]{5}\left(cm\right)\)
\(AC^2=HC.BC=196.245=196.49.5\)
\(\Rightarrow AC=98\sqrt[]{5}\left(cm\right)\)
Chu vi \(\Delta ABC\) :
\(AB+AC+BC=49\sqrt[]{5}+98\sqrt[]{5}+245=147\sqrt[]{5}+245\left(cm\right)\)
cho tam giác ABC vuông tại A , đường cao AH. Tính chu vi tam giác ABC, biết : AH=14 cm biết HB/HC =1/4