Những câu hỏi liên quan
DT
Xem chi tiết
NL
19 tháng 11 2019 lúc 1:18

Với \(n=1\Rightarrow10-4+3=9⋮9\) (đúng)

Giả sử đúng với \(n=k\) hay \(10^k-4^k+3k⋮9\)

Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay:

\(10^{k+1}-4^{k+1}+3\left(k+1\right)⋮9\)

Thật vậy:

\(10^{k+1}-4^{k+1}+3\left(k+1\right)=10.10^k-4.4^k+3k+3\)

\(=\left(10^k-4^k+3k\right)+9.10^k-3.\left(4^k-1\right)\)

Do \(4\equiv1\left(mod3\right)\Rightarrow4^k-1⋮3\Rightarrow3\left(4^k-1\right)⋮9\)

\(\Rightarrow\left(10^k-4^k+3k\right)+9.10^k-3\left(4^k-1\right)⋮9\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
12 tháng 1 2019 lúc 17:42

* Với n =1  ta có 1 3 + 11.1 = 12  chia hết cho 6 đúng.

* Giả sử với n = k thì k 3   + 11 k chia hết cho 6.

* Ta phải chứng minh với n =k+1  thì ( k + 1 ) 3 + 11(k +1) chia hết cho 6.

Thật vậy ta có :

k + 1 3 + 11 k + 1 = k 3 + 3 k 2 + 3 k + 1 + 11 k + 11 = ( k 3 + 11 k ) + 3 k ( k + 1 ) + 12   *

Ta có; k 3 +11k chia hết cho 6 theo bước 2.

k(k+1) là tích 2 số tự  nhiên liên tiếp nên chia hết cho 2  ⇒ 3 k ( k + 1 ) ⋮ 6

Và 12 hiển nhiên chia hết cho 6.

Từ đó suy ra (*) chia hết cho 6 (đpcm).

Bình luận (0)
SP
Xem chi tiết
MS
4 tháng 9 2018 lúc 0:12

\(\left(4n+3\right)^2-25=\left(4n+3-5\right)\left(4n+3+5\right)\)

\(=\left(4n-2\right)\left(4n+8\right)=2.\left(2n-1\right).4.\left(n+2\right)=8\left(2n-1\right)\left(n+2\right)⋮8\)

\(\left(2n+3\right)^2-9=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)=4n\left(n+3\right)⋮4\)

\(\left(3n+4\right)^2-16=\left(3n+4-4\right)\left(3n+4+4\right)\)

\(=3n\left(3n+8\right)⋮3\)

Bình luận (0)
HL
Xem chi tiết
DA
Xem chi tiết
PD
24 tháng 1 2021 lúc 15:18

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
LH
12 tháng 7 2015 lúc 20:33

đầy. 3,5,7 và 13,15,17,hay 15,17,19, vân vân

Bình luận (0)
NN
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
LP
6 tháng 9 2023 lúc 20:29

 Vì n là số tự nhiên không chia hết cho 2 hay 3 nên n có dạng \(6k+1\) hoặc \(6k+5\)

 Nếu \(n=6k+1\) thì hiển nhiên \(n^2-1⋮6\) và \(3n=18k+3\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.

 Nếu \(n=6k+5\) thì \(n^2-1⋮6\) (cái này dễ cm nên mình không trình bày ở đây) và \(3n=18k+15\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.

 Ta có đpcm.

Bình luận (0)
DL
6 tháng 9 2023 lúc 20:26

mk ko có hỉu

 

Bình luận (0)
NV
6 tháng 9 2023 lúc 20:37

chịu

Bình luận (0)