Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh bằng phương pháp quy nạp:
Chứng minh rằng n4-n2 chia hết cho 12 với mọi số nguyên dương n
Chứng minh rằng nếu số n không chia hết cho 2 và 3 thì số A =4n2+3n+5 chia hết cho 6
Chứng tỏ:
a) ( 3 n + 1 ) 2 - 25 chia hết cho 3 với n là số tự nhiên;
b) ( 4 n + 1 ) 2 - 9 chia hết cho 16 với n là số tự nhiên.
Chứng minh rằng: 34n+4 - 43n+3 chia hết cho 17
chứng minh rằng với mọi n thuộc N thì ( n^3 + 3n^2 -4n ) chia hết cho 6
1/ Chứng minh n5-5n3+4n chia hết cho 120 với mọi số nguyên n
2 / Chứng minh rằng n3+3n2+n+3 chia het chi 48 với mọi số lẽ n
3/ CMR n^4+4n3-4n2-16n chia hết cho 384 với mọi số nguyên n
chứng minh 4n3 - 6n2 +3n -17 không chia hết cho 125
Chứng minh: 34n+4 - 43n+3 chia hết cho 17
Chứng minh:
a) n^5 - 5n^3 + 4n chia hết cho 120 ( với mọi n thuộc Z )
b) n^3 - 3n^2 - n + 3 chia hết cho 48 ( với n lẻ )