Cho a+b+c=0. Chứng minh rằng:\(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
Cho\(a+b+c=0\) chứng minh rằng
\(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
Ta có :
\(\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\left(1\right)\)
\(\Leftrightarrow a^4+b^4+c^4=4\left(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\left(2\right)\) (vì \(a+b+c=0\))
\(\left(1\right)+\left(2\right)\Rightarrow2\left(a^4+b^4+c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)
\(\Rightarrow\left(a^4+b^4+c^4\right)=2\left(ab+bc+ca\right)^2\)
\(\Rightarrow dpcm\)
Cho a, b, c > 0. Chứng minh: \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\ge36\left(ab+bc+ca\right)\)
Cho a;b;c>0.chứng minh rằng \(\frac{a^4+b^4+c^4}{ab+bc+ca}+\frac{3abc}{a+b+c}\ge\frac{2}{3}\left(a^2+b^2+c^2\right)\)
cho a,b,c>0 chứng minh rằng
\(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\ge\dfrac{4}{ab+bc+ca}\)
Fix đề: Cho a,b,c không âm. Chứng minh \(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\ge\dfrac{4}{ab+bc+ca}\)
Dự đoán điểm rơi sẽ có 1 số bằng 0.
Giả sử \(c=min\left\{a,b,c\right\}\) ( c là số nhỏ nhất trong 3 số) thì \(c\ge0\)
do đó \(ab+bc+ca\ge ab\) và \(\dfrac{1}{\left(b-c\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c-a\right)^2}=\dfrac{1}{\left(a-c\right)^2}\ge\dfrac{1}{a^2}\)
BDT cần chứng minh tương đương
\(ab\left[\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\ge4\)
\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{a^2+b^2}{ab}\ge4\)
\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{ab}+2\ge4\)
BĐT trên hiển nhiên đúng theo AM-GM.
Do đó ta có đpcm. Dấu = xảy ra khi c=0 , \(\left(a-b\right)^2=a^2b^2\) ( và các hoán vị )
Cho a+b+c=0
Chứng minh
a) \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2\)
b) \(a^4+b^4+c^4=2\left(ab+bc+ca\right)\)
Nhanh nhaaaaaaaa
\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2\left(ab^2c+abc^2+a^2bc\right)=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow2\left(ab^2c+abc^2+a^2bc\right)=0\\ \Leftrightarrow abc\left(a+b+c\right)=0\left(đpcm;a+b+c=0\right)\)
cho a,b,c là số thực dương chứng minh
\(\dfrac{2\left(a^4+b^4+c^4\right)}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}+\dfrac{ab+bc+ca}{a^3+b^3+c^3}\ge2\)
Chứng minh rằng: Nếu \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\) thì \(a+b+c=0\)
Tại hạ đã biết là thánh học lớp 8
Cao :\_________________________________/
cho a+b+c=0. Chứng minh
\(a^4+b^4+c^{\text{4}}=2\left(ab+bc+ca\right)^2\)
Ta có: \(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2=c^2\)
\(\Rightarrow a^2+b^2-c^2=-2ab\)
\(\Rightarrow\left(a^2+b^2-c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2-b^2c^2-c^2a^2\right)\)
\(\Rightarrow a^4+b^4+c^4=\left(-2ab\right)^2-2a^2b^2+2b^2c^2+2c^2a^2=2\left(a^2b^2+b^2c^2+c^2a^2\right)\left(đpcm\right)\)
Cho a=b=c=0. Chứng minh:
a) \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
b) \(a^4+b^4+c^4=\dfrac{\left(a^2+b^2+c^2\right)^2}{2}\)
Sửa lại đề: \(a+b+c=0\)
a) Ta có:
\(A=a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)\)
\(=[(a+b+c)^2-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)\)
\(=4(ab+bc+ac)^2-2(a^2b^2+b^2c^2+c^2a^2)\)
\(=4(ab+bc+ac)^2-2(a^2b^2+b^2c^2+c^2a^2)-4abc(a+b+c)\)
(do \(a+b+c=0\))
\(A=4(ab+bc+ac)^2-2[a^2b^2+b^2c^2+c^2a^2+2abc(a+b+c)]\)
\(=4(ab+bc+ac)^2-2(ab+bc+ac)^=2(ab+bc+ac)^2\)
Ta có đpcm
b) Ta có:
\(\frac{(a^2+b^2+c^2)^2}{2}=\frac{[(a+b+c)^2-2(ab+bc+ac)]^2}{2}=\frac{[-2(ab+bc+ac)]^2}{2}=2(ab+bc+ac)^2\)
Kết hợp với kết quả phần a ta có đpcm.