Giải hệ phương trình
1, xy=300 và (x+2)×(y-3)=289
2, 1/x+1/y=1/4 và x+6=y
giải hệ phương trình : (x+1)(xy+1)=6 và x^2(y^2+y+1)=7
giải hệ pt a)2x+3y=5 và 4x-5y=1
b)xy-x-y=3 và x^2+y^2-xy=1
c)x+2y+3z=4 và 2x+3y-4z=-3 và 4x+y-z=-4
a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)
Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)
Giải hệ phương trình: \(\hept{\begin{cases}x^3+xy^2=y^6+y^4\\2\sqrt{y^4+1}+\frac{1}{x^2+1}=3-4x^3\end{cases}}\)
Giải hệ (x+y)(1+1/xy)=4 và xy+1/xy +(x^2+y^2)/xy=4
giải hệ phương trình
\(\hept{\begin{cases}x^3+xy^2=y^6+y^4\\2\sqrt{y^4+1}+\frac{1}{x^2+1}=3-4x^3\end{cases}}\)
Giải hệ phương trình \(\left\{{}\begin{matrix}x^3+xy^2=y^6+y^4\\2\sqrt{y^4+1}+\frac{1}{x^2+1}=3-4x^3\end{matrix}\right.\)
Lời giải:
Từ PT $(1)$:
$\Rightarrow x(x^2+y^2)=y^6+y^4$
Nếu $x^2+y^2=0\Rightarrow x=y=0$ (thỏa mãn)
Nếu $x^2+y^2>0\Rightarrow x=\frac{y^6+y^4}{x^2+y^2}\geq 0$.
Cũng từ PT $(1)$:
\(\Leftrightarrow (x^3-y^6)+(xy^2-y^4)=0\)
\(\Leftrightarrow (x-y^2)(x^2+xy^2+y^4)+y^2(x-y^2)=0\)
\(\Leftrightarrow (x-y^2)(x^2+xy^2+y^4+y^2)=0\)
TH1: $x-y^2=0\Leftrightarrow x=y^2\Rightarrow x\geq 0$
Thay vào PT $(2)$ ta có:
\(2\sqrt{x^2+1}+\frac{1}{x^2+1}+4x^3=3\)
Thấy rằng:
\(2\sqrt{x^2+1}+\frac{1}{x^2+1}=\sqrt{x^2+1}+\sqrt{x^2+1}+\frac{1}{x^2+1}\geq 3\) theo BĐT AM-GM
\(4x^3\geq 0\) do $x\geq 0$
$\Rightarrow 2\sqrt{x^2+1}+\frac{1}{x^2+1}+4x^3\geq 3$
Dấu "=" xảy ra khi $\sqrt{x^2+1}=\frac{1}{x^2+1}$ và $x^3=0$ hay $x=0$
$\Rightarrow y^2=x=0\Rightarrow y=0$
Ta có cặp nghiệm $(x,y)=(0,0)$
TH2: $x^2+xy^2+y^4+y^2=0$
Vì $x\geq 0; y^2\geq 0$ nên $x^2+xy^2+y^4+y^2\geq 0$
Dấu "=" xảy ra khi $x=y^2=0$ hay $x=y=0$.
Tóm lại hệ có nghiệm $x=y=0$
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^3+xy^2=y^6+y^4\\2\sqrt{y^4+1}+\dfrac{1}{x^2+1}=3-4x^3\end{matrix}\right.\)
Bạn tham khảo lời giải tại link sau:
Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến
Giải hệ pt:
a)(x+√(x^2+4))(y+√(y^2+1))=2 và 27x^6=x^3-8y+2
b)(8x-3)√(2x-1) -y-4y^3=0 và 4x^2-8x+2y^3+y^2-2y+3=0
c) x(1+y-x)=-2y^2-y và x(√2y -2)=y(√(x-1)-2)
d) √(x+2y)+√(2x-y)+x^2y=√x+√3y+xy^2 và 2(1-y)√(x^2+2y-1)=y^2-2x-1
e)(y-2x+√y-√x)/√xy +1=0 và √(1-xy) +x^2-y^2=0
CÁC BẠN ƠI..GIÚP MK VS Ạ...MAI MK HOK R...CẢM ƠM TRƯỚC Ạ...☺️☺️☺️
Giải hệ phương trình:
\(x^3+xy^2=y^6+y^4\)
\(2\sqrt{y^4+1}+\frac{1}{x^2+1}=3-4x^3\)
( 2 cái phương trình là 1 hệ nhé !!! )