Cho T= 20190+ 20191+20192+...+20192011
Tính 2018T+1
2022-[45-(6-1)2]+20190
2020-[45-(6-1)2]+20190
\(=2020-\left(45-25\right)+1=2020-20+1=2001\)
\(=2020-\left(45-5^2\right)+1=2021-20=2001\)
So sánh A = 2019.2021.a và B = ( 2019 2 + 2 . 2019 + 1 ) a (với a > 0)
A. A= B
B. A ≥ B
C. A > B
D.A < B
Ta có A = 2019.2021.a = (2020 – 1)(2020 + 1)a = ( 2020 2 – 1)a
Và B = ( 2019 2 + 2 . 2019 + 1 ) a = ( 2019 + 1 ) 2 a = 2020 2 a
Vì 2020 2 – 1 < 2020 2 và a > 0 nên ( 2020 2 – 1 ) a < 2020 2 a hay A < B
Đáp án cần chọn là: D
so sánh 20181/20191 với 20181/20171
Trả lời :
Vì 20191 > 20171
=> 20181/ 20191 < 20181/ 20171
20181/20191 < 20181/20171
Mk nghĩ z
K mk nha
~Mio~
\(\frac{20181}{20191}< \frac{20181}{20171}\)
k mik nha
Học tốt
^_^
20192+0982 +987=?
Giúp mình
= 3029876 nha
Hok tot
Kb hh
Đáp án :
22161
hok tốt
_________________
Tính Nhanh:
a)1532-532
b)20202-20192+20182-20172+...+22-12
a) \(153^2-53^2=\left(153-53\right)\left(153+53\right)=100.206=20600\)
b)
\(\left(2020^2-2019^2\right)+\left(2018^2-2017^2\right)+...+\left(2^2-1^2\right)\\ =\left(2020+2019\right)\left(2020-2019\right)+\left(2018+2017\right)\left(2018-2017\right)+...+\left(2+1\right)\left(2-1\right)\\ =2020+2019+2018+2017+...+2+1\\ =\dfrac{\left(2020+1\right)2020}{2}=2041210\)
Lời giải:
a. $153^2-53^2=(153-53)(153+53)=100.206=20600$
b.
$2020^2-2019^2+2018^2-2017^2+...+2^2-1^2$
$=(2020^2-2019^2)+(2018^2-2017^2)+...+(2^2-1^2)$
$=(2020-2019)(2020+2019)+(2018-2017)(2018+2017)+...+(2-1)(2+1)$
$=2020+2019+2018+2017+...+2+1$
$=\frac{2020.2021}{2}=2041210$
a) 1532-532=(153-53)(153+53)=100.206=20600
X+X:1/3+X:0.5+X:0,25=20190 có ai biết làm ko chỉ mình với
X x 1 + X x 3 + X x 2 + X x 4 = 20190
X x ( 1 + 3 + 2 + 4 ) = 20190
X x 10 = 20190
X = 20190 : 10
X = 2019
~Hok tốt~
Tính nhanh
1, 1532+94.135+472
2,1,24-2,48.0,24=0,242
3, 2055-955
4,38.58-(154-1)(154+1)
5,12-22+32-42+...-20192+20202
6,(2+1)(22+1)(24+1)...(22020+1)+1
1.
$=153^2+2.47.153+47^2=(153+47)^2=200^2=40000$
2.
$=1,24^2-2.1,24.0,24+0,24^2=(1,24-0,24)^2=1^2=1$
3. Không phù hợp để tính nhanh
4.
$=15^8-(15^8-1)=1$
5.
$=(1^2-2^2)+(3^2-4^2)+(5^2-6^2)+...+(2019^2-2020^2)$
$=(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+...+(2019-2020)(2019+2020)$
$=(-1)(1+2)+(-1)(3+4)+(-1)(5+6)+....+(-1)(2019+2020)$
$=(-1)(1+2+3+4+....+2019+2020)=(-1).2020(2020+1):2=-2041210$
6:
\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^4-1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^8-1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^{2020}-1\right)\left(2^{2020}+1\right)+1\\ =2^{4040}-1+1=2^{4040}\)
Thực hiện phép tính bằng cách hợp lý(nếu có thể)
A=20192 -2016.2022
\(A=2019^2-\left(2019-3\right)\left(2019+3\right)\\ A=2019-2019^2-2019\cdot3+2019\cdot3+3^2\\ A=9\)