\(T=2019^0+2019^1+2019^2+...+2019^{2011}\)
\(\rightarrow2019T=2019\left(2019^0+2019^1+2019^2+...+2019^{2011}\right)\)
\(\rightarrow2019T=2019^1+2019^2+2019^3+...+2019^{2012}\)
\(\rightarrow2019T-T=(2019^1+2019^2+2019^3+...+2019^{2012})-\left(2019^0+2019^1+...+2019^{2011}\right)\)
\(\rightarrow2018T=2019^{2012}-2019^0=2019^{2012}-1\)
\(\rightarrow2018T+1=2019^{2012}-1+1=2019^{2012}\)
T = 20190 + 20191 + 20192 +...+20192011
T = 1 + 20191 + 20192 +...+ 20192011
2019T = 20191 + 20192 +20193 +...+20192012
2019T - T = (20191 + 20192 +20193 +...+20192012) - (1 + 20191 + 20192 +...+ 20192011)
2018T = 20192012 - 1
=> 2018T + 1 = 20192012