Những câu hỏi liên quan
VN
Xem chi tiết
TX
Xem chi tiết
AN
8 tháng 8 2017 lúc 13:27

\(M=x^2+5y^2-4xy+2x-8y+2021\)

\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-4y+4\right)+2016\)

\(=\left(x-2y+1\right)^2+\left(y-2\right)^2+2016\ge2016\)

Vậy GTNN của M là 2016 đạt đươc tại \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Bình luận (0)
HG
Xem chi tiết
NT
17 tháng 12 2023 lúc 13:53

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

Bình luận (0)
KT
Xem chi tiết
TC
24 tháng 6 2017 lúc 8:09

Đặt \(A=x^2-4x+y^2-8y+6\)

\(\Leftrightarrow A=x^2-4x+4+y^2-8y+16-14\)

\(\Leftrightarrow A=\left(x-2\right)^2+\left(y-4\right)^2-14\)

           Vì \(\left(x-2\right)^2\ge0;\left(y-4\right)^2\ge0\)

                    \(\Rightarrow\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

         Dấu = xảy ra khi \(\hept{\begin{cases}x-2=0\\y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Vậy Min A = -14 khi x=2;y=4

Bình luận (0)
NL
24 tháng 6 2017 lúc 8:12

\(A=x^2-4x+y^2-8y+6=\left(x^2-2.x.2+2^2\right)+\left(y^2-2.y.4+4^2\right)+\left(6-4-16\right)\)

\(=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Vậy \(MinA=-14\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}}\)

Bình luận (0)
HN
Xem chi tiết
TL
9 tháng 3 2020 lúc 15:47

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
9 tháng 3 2020 lúc 15:55

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

Bình luận (0)
 Khách vãng lai đã xóa
MC
Xem chi tiết
KY
20 tháng 12 2020 lúc 13:10
Bạn chơi ff ko 😀😀😀
Bình luận (0)
 Khách vãng lai đã xóa
H24
20 tháng 12 2020 lúc 16:24

A= (x2+4y2+9/4+4xy+3x+3y) + (y2+5x+95/4)

  = (x+2y+3/2)2 + (y+5/2)2 + 15

=> A min = 15

Dấu "=" xảy ra khi y=-5/2 ; x=7/2

Bình luận (0)
 Khách vãng lai đã xóa
NL
20 tháng 12 2020 lúc 17:47

\(A=x^2+5y^2+4xy+3x+8y+26\)

\(=\left(x^2+4xy+4y^2\right)+\left(3x+6y\right)+\frac{9}{4}+\left(y^2+2y+1\right)+\frac{91}{4}\)

\(=\left(x+2y\right)^2+3\left(x+2y\right)+\frac{9}{4}+\left(y+1\right)^2+\frac{91}{4}\)

\(=\left(x+2y+\frac{3}{2}\right)^2+\left(y+1\right)^2+\frac{91}{4}\ge\frac{91}{4}\forall x,y\)

Dấu"="xảy ra khi \(\orbr{\begin{cases}x+2y+\frac{3}{2}=0\\y+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}}\)

Vậy .....

Bình luận (0)
 Khách vãng lai đã xóa
CC
Xem chi tiết
DS
3 tháng 11 2017 lúc 20:08

Phân tích đa thức thành nhân tử có dạng (a+b)2 + c trong đó c là 2013 và vận dụng cách tìm GTNN đã học (Thầy giáo Đặng Trọng Sơn)

Bình luận (0)
DS
7 tháng 11 2017 lúc 21:19

thầy chỉ hướng dẫn cho e như thế thôi e tự tìm cách giải mới giỏi lên được

Bình luận (0)
LN
Xem chi tiết
VN
Xem chi tiết