Những câu hỏi liên quan
H24
Xem chi tiết
LD
16 tháng 11 2019 lúc 12:25

\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)

\(\left(2a+b\right)\cdot\left(c-2d\right)=\left(2c+d\right)\cdot\left(a-2b\right)\)

\(\frac{2a+b}{2c+d}=\frac{a-2b}{c-2d} \)

\(\frac{2a+b}{2c+d}=\frac{a-2b}{c-2d} \)

\(\frac{2a+b}{2c+d}=\frac{a-2b}{c-2d}=\frac{2a}{2c}=\frac{b}{d}=\frac{a}{c}=\frac{2b}{2d}\) (dãy tỉ số bằng nhau)

\(⇒\frac{b}{d}=\frac{a}{c} ⇒ad=bc ⇒\ \frac{a}{b}=\frac{c}{d}\)

bạn đọc không hiểu chỗ nào thì cứ hỏi nhé!!!

Bình luận (0)
 Khách vãng lai đã xóa
PN
Xem chi tiết
SG
4 tháng 11 2016 lúc 13:43

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> a = b = c = d

=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)

D = 1 + 1 + 1 + 1 = 4

Bình luận (0)
TK
Xem chi tiết
HT
Xem chi tiết
NG
16 tháng 1 2016 lúc 20:09

xem lại đề đi

Bình luận (0)
CD
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
PQ
12 tháng 10 2018 lúc 19:42

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(\Leftrightarrow\)\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Leftrightarrow\)\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

+) Xét \(a+b+c+d=0\)

Suy ra : 

\(a+b=-\left(c+d\right)\)

\(b+c=-\left(d+a\right)\)

\(c+a=-\left(b+d\right)\)

\(d+a=-\left(b+c\right)\)

Do đó : \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{c+b}\)

\(M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)

\(M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)

\(M=-4\)

+) Xét \(a+b+c+d\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=4\)

Do đó : 

\(\frac{a+b+c+d}{a}=4\)\(\Leftrightarrow\)\(a+b+c+d=4a\) \(\left(1\right)\)

\(\frac{a+b+c+d}{b}=4\)\(\Leftrightarrow\)\(a+b+c+d=4b\) \(\left(2\right)\)

\(\frac{a+b+c+d}{c}=4\)\(\Leftrightarrow\)\(a+b+c+d=4c\) \(\left(3\right)\)

\(\frac{a+b+c+d}{d}=4\)\(\Leftrightarrow\)\(a+b+c+d=4d\) \(\left(4\right)\)

Từ (1), (2), (3) và (4) suy ra \(4a=4b=4c=4d\) \(\left(=a+b+c+d\right)\)

\(\Leftrightarrow\)\(a=b=c=d\)

\(\Rightarrow\)\(M=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)

\(\Rightarrow\)\(M=1+1+1+1=4\)

Vậy \(M=-4\) hoặc \(M=4\)

Chúc bạn học tốt ~ 

Bình luận (0)
PQ
12 tháng 10 2018 lúc 20:15

Ta có : 

\(2a+2b+2c=by+cz+ax+cz+ax+by\)

\(\Leftrightarrow\)\(2\left(a+b+c\right)=2\left(ax+by+cz\right)\)

\(\Leftrightarrow\)\(a+b+c=ax+by+cz\)

+) \(a+b+c=ax+\left(by+cz\right)=ax+2a=a\left(x+2\right)\)

\(\Rightarrow\)\(\frac{1}{x+2}=\frac{a}{a+b+c}\) \(\left(1\right)\)

+) \(a+b+c=by+\left(ax+cz\right)=by+2b=b\left(y+2\right)\)

\(\Rightarrow\)\(\frac{1}{y+2}=\frac{b}{a+b+c}\) \(\left(2\right)\)

+) \(a+b+c=cz+\left(ax+by\right)=cz+2c=c\left(z+2\right)\)

\(\Rightarrow\)\(\frac{1}{z+2}=\frac{c}{a+b+c}\) \(\left(3\right)\)

Từ (1), (2) và (3) suy ra \(M=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)

\(M=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(M=\frac{a+b+c}{a+b+c}=1\)

Vậy \(M=1\)

Chúc bạn học tốt ~ 

Bình luận (0)
NB
Xem chi tiết
KD
15 tháng 11 2016 lúc 20:14

onl ko nt

Bình luận (0)
YT
15 tháng 11 2016 lúc 20:28

Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) (đề bài)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

\(\Rightarrow\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{d}=1\\\frac{d}{a}=1\end{cases}\Rightarrow\begin{cases}a=b\\b=c\\c=d\\d=a\end{cases}\)

\(\Rightarrow a=b=c=d\)

Thay \(b=a\) ; \(c=a\) ; \(d=a\) vào biểu thức \(M=\frac{2a-b}{c+d}=\frac{2b-c}{d+a}=\frac{2c-d}{a+b}=\frac{2d-a}{b+c}\) ta có :
\(M=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}\)

\(M=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1}{2}\)

Vậy \(M=\frac{1}{2}\)

Bình luận (1)
G6
Xem chi tiết
H24
6 tháng 1 2019 lúc 17:48

\(\Leftrightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Leftrightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

\(\text{Th}1:a+b+c+d=0\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\end{cases}}\)

\(M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{c+d}{-\left(c+d\right)}+\frac{d+a}{-\left(a+d\right)}=-4\)

\(\text{th}2:a+b+c+d\ne0\Rightarrow a=b=c=d\)

\(\Leftrightarrow M=1+1+1+1=4\)

Vậy....

p/s: đầu tiên nhớ ghi lại cái đề nha :)) 

Bình luận (0)