Những câu hỏi liên quan
LL
Xem chi tiết
KL
11 tháng 8 2023 lúc 9:48

Do \(\left(10a+b\right)⋮13\Rightarrow10a+b=13k\left(k\in N\right)\)

\(\Rightarrow b=13k-10a\)

\(\Rightarrow a+4b=a+4.\left(13k-10a\right)\)

\(=a+52k-40a\)

\(=52k-39a\)

\(=13\left(4k-3a\right)⋮13\)

Vậy \(\left(10a+b\right)⋮13\Rightarrow\left(a+4b\right)⋮13\)

Bình luận (0)
DB
11 tháng 8 2023 lúc 10:28

(a+4b)13

Bình luận (0)
MD
11 tháng 8 2023 lúc 13:45

Do (10�+�)⋮13⇒10�+�=13�(�∈�)

⇒�=13�−10�

⇒�+4�=�+4.(13�−10�)

=�+52�−40�

=52�−39�

=13(4�−3�)⋮13

Vậy (10�+�)⋮13⇒(�+4�)⋮13

Bình luận (0)
BT
Xem chi tiết
BT
4 tháng 9 2023 lúc 20:39

chắc khó qué nên ko ai lm cho tớ hic😥

Bình luận (1)
DN
Xem chi tiết
DN
22 tháng 7 2015 lúc 15:39

Làm nhanh trong ngày hôm nay và ngày mai hộ mình nha 

trân thành cảm ơn 

Bình luận (0)
LP
Xem chi tiết
LL
3 tháng 6 2021 lúc 22:08

Đặt \(X=\frac{a+1}{b}+\frac{b+1}{a}=\frac{a^2+b^2+a+b}{ab}\)

Vì X là số tự nhiên => \(a^2+b^2+a+b⋮ab\)

Vì d=UCLN(a,b) => \(a⋮d\) và \(b⋮d\)=> \(ab⋮d^2\)

=> \(a^2+b^2+a+b⋮d^2\)

Lại vì  \(a⋮d\) và  \(b⋮d\) => \(a^2⋮d^2\) và \(b^2⋮d^2\) => \(a^2+b^2⋮d^2\)

=> \(a+b⋮d^2\)

=> \(a+b\ge d^2\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
TT
12 tháng 3 2022 lúc 17:01

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
BT
Xem chi tiết
NT
4 tháng 9 2023 lúc 20:09

10:

n lẻ nên n=2k-1

=>A=1+3+5+7+...+2k-1

Số số hạng là (2k-1-1):2+1=k-1+1=k(số)

Tổng là:

\(\dfrac{\left(2k-1+1\right)\cdot k}{2}=k^2\) là số chính phương(ĐPCM)

Bình luận (2)
DL
24 tháng 8 2024 lúc 9:57

haha

Bình luận (0)
CC
Xem chi tiết
NH
20 tháng 7 2016 lúc 17:06

gọi a=3p+r

b=3q+r

xét a-b= (3p+r)-(3q+r)

=3p + r - 3q - r

=3p+3q =3.(p+q) chia hết cho 3

các câu sau làm tương tự

Bình luận (0)
NH
20 tháng 7 2016 lúc 17:06

ủng hộ mik nha

Bình luận (0)
NN
3 tháng 11 2024 lúc 9:08

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$

`2A - A = - 1 + 2^42`$\\$

hay `A = -1 + 2^42`$\\$

Bình luận (0)
H24
Xem chi tiết
LP
Xem chi tiết
PD
Xem chi tiết