Phân tích đa thức thành nhân tử :
1 . x2 + 14x - 16y2 + 49
2 . xy - y2 - x + y
3 . x4 - 5x2 + 4
Phân tích đa thức thành nhân tử:
a) xy + y2 – x – y
b) 25 – x2 + 4xy – 4y2
c) 4x3 + 4xy2 + 8x2y – 16x
d) (x2 + x)2 + 4(x2 + x) – 12
e) (x + 1) (x + 2) (x + 3) (x + 4) - 24 g)
h) x2 – 5x + 4
i) x4 – 5x2 + 4
j) x3 – 2x2 + 6x – 5
k) x2 – 4x + 3
a: \(=x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-1\right)\)
b: \(=25-\left(x-2y\right)^2\)
\(=\left(5-x+2y\right)\left(5+x-2y\right)\)
Bài 2 Phân tích đa thức sau thành nhân tử
a. x4 + 2x3 − 4x − 4
b. x2(1 − x2) − 4 − 4x2
c. x2 + y2 − x2y2 + xy − x − y
d* a3 + b3 + c3 − 3abc
a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)
d) Ta có: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
Phân tích các đa thức sau thành nhân tử:
4x2y2 - ( x2 + y2 - a2)2
x3 - 1 + 5x2 - 5 +3x - 3
( x - y)2 + 4(x-y) + 4
x2 -2x( 3x+1) + (3x+1)2
x4 + 2x2(2x+1) + ( 2x+1)2
\(\left(x-y\right)^2+4\left(x-y\right)+4\)
\(=\left(x-y\right)^2+2.\left(x-y\right).2+2^2\)
\(=\left(x-y+2\right)^2\)
hk tốt
^^
Bài 2: Phân tích đa thức thành nhân tử:
1) 6x3y - 12x2y2 + 6xy3 6) x – x -2
2) (x2 +4)2 -16 7) x4 - 5x2 + 4
3) 5x2 - 5xy - 10x + 10y 8) x2 – x3 - 2x2 - x
4) a3 - 3a + 3b – b3 9) (a3 – 27) – (3 – a)(6a + 9)
5) x2 - 2x – y2 +1 10) x2(y – z) + y2(z – x) + z2(x – y)
\(1,=6xy\left(x^2-2xy+y^2\right)=6xy\left(x-y\right)^2\\ 2,=\left(x^2+4-4\right)\left(x^2+4+4\right)=x^2\left(x^2+8\right)\\ 3,=5x\left(x-y\right)-10\left(x-y\right)=5\left(x-2\right)\left(x-y\right)\\ 4,=\left(a-b\right)\left(a^2+ab+b^2\right)-3\left(a-b\right)=\left(a-b\right)\left(a^2+ab+b^2-3\right)\\ 5,=\left(x-1\right)^2-y^2=\left(x+y-1\right)\left(x-y-1\right)\\ 6,Sửa:x^2-x-2=x^2+x-2x-2=\left(x+1\right)\left(x-2\right)\\ 7,=x^4-4x^2-x^2+4=\left(x^2-4\right)\left(x^2-1\right)\\ =\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\\ 8,=-x^3-x^2-x=-x\left(x^2+x+1\right)\\ 9,=\left(a-3\right)\left(a^2+3a+9\right)+\left(a-3\right)\left(6a+9\right)\\ =\left(a-3\right)\left(a^2+9a+18\right)\\ =\left(a-3\right)\left(a^2+3a+6a+18\right)\\ =\left(a-3\right)\left(a+3\right)\left(a+6\right)\)
\(10,=x^2y-x^2z+y^2z-xy^2+z^2\left(x-y\right)\\ =xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\\ =\left(x-y\right)\left(xy-xz-yz+z^2\right)\\ =\left(x-y\right)\left(x-z\right)\left(y-z\right)\)
Bài 2: Phân tích đa thức thành nhân tử
a) x2−xy+5y−25
b) xy−y2−3x+3y
c) x2(x−3)−4x+12
d) 2a(x+y)−x−y
e) 2x−4+5x2−10x
g) 10ax−5ay−2x+y
h) a2−2a+1−b2
a) x2-xy+5y-25
= x(2-y)+ 5(y-2)
= x(2-y)-5(2-y)
= (x-5)(2-y)
h: \(=\left(a-1-b\right)\left(a-1+b\right)\)
phân tích đa thức thành nhân tử
a) x2- x- y2- y
b) x2- 2xy- y2-z2
c) 5x- 5y+ 4x- ay
d) 3x3- x2-21x+ 7
e) x3- 4x2- 8x- 8
f) x3- 5x2- 5x+ 1
g) x2y- xz+ z- y
h) x4- x3+ x2- 1
i) x4- x2+ 10x- 25
a: \(x^2-y^2-x-y\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
f: \(x^3-5x^2-5x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)-5x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-6x+1\right)\)
Bài 2 Phân tích thành nhân tử
a) 3x2 – 7x – 10
b) x2 + 6x +9 – 4y2
c) x2 – 2xy + y2 – 5x + 5y’
d) 4x2 – y2 – 6x + 3y
e) 1 – 2a + 2bc + a2 – b2 – c2
f) x3 – 3x2 – 4x + 12
g) x4 + 64
h) x4 – 5x2 + 4
i) (x+1)(x+3)(x+5)(x+7) + 16
j) (x2 + 6x +8)( x2 + 14x + 48) – 9
k) ( x2 – 8x + 15)(x2 – 16x + 60) – 24x2
l) 4( x2 + 15x + 50)(x2 +18x +72) – 3x2
Bài 3 tìm gtnn
A = 9x2 – 6x + 2
B = 4x2 + 5x + 10
C = x2 – x + 10
D = 4x2 + 3x + 20
E = x2 + y2 – 6xy + 10y + 35
F= x2 + y2 – 6x + 4y +2
M= 2x2 + 4y2 – 4xy – 4x – 4y +2021
Bài 2:
a) \(3x^2-7x-10=\left(x+1\right)\left(3x-10\right)\)
b) \(x^2+6x+9-4y^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)
c) \(x^2-2xy+y^2-5x+5y=\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)
d) \(4x^2-y^2-6x+3y=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)
e) \(1-2a+2bc+a^2-b^2-c^2=\left(a-1\right)^2-\left(b-c\right)^2=\left(a-1-b+c\right)\left(a-1+b-c\right)\)
f) \(x^3-3x^2-4x+12=\left(x+2\right)\left(x-3\right)\left(x-2\right)\)
g) \(x^4+64=\left(x^2+8\right)^2-16x^2=\left(x^2+8-4x\right)\left(x^2+6+4x\right)\)h) \(x^4-5x^2+4=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x-2\right)\)
i) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+16=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+16=\left(x^2+8x+7\right)^2+8\left(x^2+8x+7\right)+16=\left(x^2+8x+11\right)^2\)
a: \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=\left(x+1\right)\left(3x-10\right)\)
b: \(x^2+6x+9-4y^2\)
\(=\left(x+3\right)^2-4y^2\)
\(=\left(x+3-2y\right)\left(x+3+2y\right)\)
c: \(x^2-2xy+y^2-5x+5y\)
\(=\left(x-y\right)^2-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-5\right)\)
a) 3x2−7x−10=(x+1)(3x−10)3x2−7x−10=(x+1)(3x−10)
b) x2+6x+9−4y2=(x+3)2−(2y)2=(x+3−2y)(x+3+2y)x2+6x+9−4y2=(x+3)2−(2y)2=(x+3−2y)(x+3+2y)
c) x2−2xy+y2−5x+5y=(x−y)2−5(x−y)=(x−y)(x−y−5)x2−2xy+y2−5x+5y=(x−y)2−5(x−y)=(x−y)(x−y−5)
d) 4x2−y2−6x+3y=(2x−y)(2x+y)−3(2x−y)=(2x−y)(2x+y−3)4x2−y2−6x+3y=(2x−y)(2x+y)−3(2x−y)=(2x−y)(2x+y−3)
e) 1−2a+2bc+a2−b2−c2=(a−1)2−(b−c)2=(a−1−b+c)(a−1+b−c)1−2a+2bc+a2−b2−c2=(a−1)2−(b−c)2=(a−1−b+c)(a−1+b−c)
f) x3−3x2−4x+12=(x+2)(x−3)(x−2)x3−3x2−4x+12=(x+2)(x−3)(x−2)
g) x4+64=(x2+8)2−16x2=(x2+8−4x)(x2+6+4x)x4+64=(x2+8)2−16x2=(x2+8−4x)(x2+6+4x)h) x4−5x2+4=(x+2)(x+1)(x−1)(x−2)x4−5x2+4=(x+2)(x+1)(x−1)(x−2)
i) (x+1)(x+3)(x+5)(x+7)+16=(x2+8x+7)(x2+8x+15)+16=(x2+8x+7)2+8(x2+8x+7)+16=(x2+8x+11)2(x+1)(x+3)(x+5)(x+7)+16=(x2+8x+7)(x2+8x+15)+16=(x2+8x+7)2+8(x2+8x+7)+16=(x2+8x+11)2
x/y có phải đơn thức ko
phân tích đa thức sau thành nhân tử
a) x2-2x+1
b)x2+2xy-25+y2
c)5x2-10xy
d)x2-y2+x-y
Lời giải:
$\frac{x}{y}$ không phải đơn thức bạn nhé.
a. $x^2-2x+1=(x-1)^2$
b. $x^2+2xy-25+y^2=(x^2+2xy+y^2)-25=(x+y)^2-5^2=(x+y-5)(x+y+5)$
c. $5x^2-10xy=5x(x-2y)$
d. $x^2-y^2+x-y=(x^2-y^2)+(x-y)=(x-y)(x+y)+(x-y)$
$=(x-y)(x+y+1)$
Phân tích đa thức thành nhân tử (bằng phương pháp nhóm hạng tử)
c/ 5x2 + 3y + 15x + xy d/ x2 + 6x + 9 – y2
e/ x2 – y2 + 2x + 1 f/ x2 – 2xy – 9 + y2
c) \(5x^2+3y+15x+xy=5x\left(x+3\right)+y\left(x+3\right)=\left(x+3\right)\left(5x+y\right)\)
d) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x+3-y\right)\left(x+3+y\right)\)
e) \(x^2-y^2+2x+1=\left(x^2+2x+1\right)-y^2=\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)
f) \(x^2-2xy-9+y^2=\left(x^2-2xy+y^2\right)-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)
c: \(5x^2+15x+3y+xy\)
\(=5x\left(x+3\right)+y\left(x+3\right)\)
\(=\left(x+3\right)\left(5x+y\right)\)
d: \(x^2+6x+9-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x+3-y\right)\left(x+3+y\right)\)
e: \(x^2+2x+1-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1-y\right)\left(x+1+y\right)\)
f: \(x^2-2xy+y^2-9\)
\(=\left(x-y\right)^2-9\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)
Phân tích các đa thức sau thành nhân tử
a) x 2 + x y − 5 x − 5 y
b) 25 − x 2 − y 2 − 2 x y
c) x 4 + x 3 + 2 x 2 + x + 1