CMR \(\left(x+1\right)^{2n+1}+x^{n+2}⋮x^2+x+1\forall x\inℕ^∗\)
1, x,y,z∈N*. CMR x+3z-y là hợp số biết `x^2+y^2=z^2`
2,Tìm n∈N* để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\)
3, CMR:\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\forall x\ne y,xy\ne0\)
2.
\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)
\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)
*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)
*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)
\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)
\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)
\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)
\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)
-Vậy \(n=1\)
1. \(x^2+y^2=z^2\)
\(\Rightarrow x^2+y^2-z^2=0\)
\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)
-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.
\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.
-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.
*Xét \(\left(x-z\right)⋮2\):
\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.
*Xét \(\left(x+z\right)⋮2\):
\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.
B1.a) Tìm n để đa thức \(\left(x^4-x^3+6x^2-x+n\right)⋮\left(x^2-x+5\right)\)
b) Tìm tất cả các số nguyên n để \(\left(2n^2+n-7\right)⋮\left(n-2\right)\)
B2. cmr
a) \(x^2-x+1>0\forall x\)
b) \(-x^2+4x-5< 0\forall x\)
c) a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
\(x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(-x^2+4x-5=-\left(x^2-2.x.2+2^2\right)-1=-\left(x-2\right)^2-1< 0\forall x\)
\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\forall a\inℤ\)
Chứng minh rằng
a, \(\left(2n-3\right).n-2n.\left(n+2\right)⋮7\forall n\in Z\)
b, \(n.\left(2n-3\right)-2n.\left(n+1\right)⋮5\forall n\in Z\)
Rút gọn
a, (3x-5) . (2x+11) - (2x+3) . (3x+7)
b, (x+2) . (2x2-3x+4) - (x2-1) . (2x+1)
c, 3x2 .(x2+2) + 4x. (x2-1) - (x2+2x+3) . (3x2-2x+1)
\(a,\left(2x-3\right)n-2n\left(n+2\right)\)
\(=n\left(2x-3-2n-4\right)\)
\(=-7n\)
Vì \(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM
\(b,n\left(2n-3\right)-2n\left(n+1\right)\)
\(=n\left(2n-3-2n-2\right)\)
\(=-5n⋮5\) (ĐPCM)
Rút gọn
\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)
\(=-76\)
\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)
\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)
\(=9\)
\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)
\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)
= -3
1, CMR nếu a, b, c là các số tự nhiên đôi một nguyên tố cùng nhau thì \(\left(ab+bc+ca,abc\right)=1\)
2, CMR \(\forall n\in N\)* thì \(\dfrac{\left(17+12\sqrt{2}\right)^n-\left(17-12\sqrt{2}\right)^n}{4\sqrt{2}}\)
3, Tìm x,y∈Z:\(x^3-y^3=13\left(x^2+y^2\right)\)
Tìm x
\(\left(2x+1\right)⋮\left(3x+1\right)\)\(\left(x\inℕ\right)\left(x\inℤ\right)\)
\(\left(5x-2\right)⋮\left(3x+1\right)\)\(\left(x\inℕ\right)\left(x\inℤ\right)\)
\(\left(x^2+x+3\right)⋮\left(x+1\right)\)\(\left(x\inℕ\right)\)
cmr \(q\left(x\right)=3^{4x+2}+3.5^{2x+1}+2^{3x+1}+2.4^{3x+1}⋮17\forall x\in N\)
Lời giải:
Biến đổi: \(q(x)=9.81^x+15.25^x+2.8^x+8.64^x\)
Lại có:
\(\left\{\begin{matrix} 81\equiv 13\pmod {17}\rightarrow 81^k\equiv 13^k\pmod {17}\\ 25\equiv 8\pmod {17}\rightarrow 25^k\equiv 8^k\pmod {17}\\ 64\equiv 13\pmod {17}\rightarrow 64^k\equiv 13^k\pmod {17}\end{matrix}\right.\)
Do đó, \(q(x)\equiv 9.13^k+15.8^k+2.8^k+8.13^k\pmod {17}\)
\(\Leftrightarrow q(x)\equiv 17.13^k+17.8^k\equiv 0\pmod {17}\)
\(\Leftrightarrow q(x)\vdots 17\) (đpcm)
CMR: với mọi số tự nhiên n :
a) \(\left(x+1\right)^{2n}-x^{2n}-2x-1\) chia hết cho \(x\left(x+1\right)\left(2x+1\right)\)
b) \(x^{4n+2}+2x^{2n+1}+1\) chia hết cho \(\left(x+1\right)^2\)
c) \(\left(x+1\right)^{4n+2}+\left(x-1\right)^{4n+2}\) chia hết cho \(x^2+1\)
Tìm hàm số f(x) thỏa mãn
a)\(f\left(x-1\right)+3f\left(\dfrac{1-x}{1-2x}\right)=1-2x,\forall x\ne\dfrac{1}{2}\)
b)\(f\left(x\right)+f\left(\dfrac{1}{1-x}\right)=x+1-\dfrac{1}{x},\forall x\ne0;x\ne1\)
c) \(3f\left(x\right)-2f\left(f\left(x\right)\right)=x,\forall x\in Z\)
Cho hàm số f: R\(\rightarrow\)R , \(n\ge2\) là số nguyên . CMR: nếu
\(\dfrac{f\left(x\right)+f\left(y\right)}{2}\ge f\left(\dfrac{x+y}{2}\right)\forall x,y\ge0\) (1) thì ta có :
\(\dfrac{f\left(x_1\right)+f\left(x_2\right)+....+f\left(x_n\right)}{n}\ge f\left(\dfrac{x_1+x_2+...+x_n}{n}\right)\) \(\forall x\ge0,i=\overline{l,n}\)