S2 =3-3 mũ 2 + 3 mũ 3 -3 mũ 4 +...+-3 mũ 2020
a,5 mũ 3:5 mũ 2-78.2 mũ 5
b,6.(3 mũ 2-24:4)
c,(46.123-46.42):3 mũ 4
d,181+87:29-7.12+2 mũ 3.5 mũ 2
e,4 mũ 3.35+2.70.84-2020 mũ 0
f,3 mũ 19:3 mũ 16+5 mũ 2.2 mũ 3-1 mũ 2019
g,3 mũ 6:3 mũ 5+2.2 mũ 3+2020 mũ 0
h,6 mũ 2:4.3+2.5 mũ 2-1 mũ 2022
i,5 mũ 9:5 mũ 7+12.3+7 mũ 0
j,(3 mũ 18.4+5.3 mũ 18):13 mũ 18
k,5 mũ 8:5 mũ 6+3 mũ 2-2022 mũ 0
l,(2.5 mũ 2-18:3 mũ 2):2 mũ 3
m,6 mũ 20:(6 mũ 15.25+6 mũ 15.11)
n,6 mũ 2:2.3+4 mũ 2.3 mũ 4-4 mũ 2.79-2 mũ 3.5
(Hơi nhiều,mn làm giúp mik với ạ mik đang cần gấp ạ,Làm Ơn )
a: =5-78*32
=5-2496
=-2491
b: \(=6\left(9-6\right)=6\cdot3=18\)
c: \(=46\cdot\dfrac{\left(123-42\right)}{81}=46\)
d: \(=181+3-84+8\cdot25\)
=100+200
=300
e: \(=64\cdot35+140\cdot84-1=2240-1+11760\)
=14000-1
=13999
f: \(=3^3+25\cdot8-1=26+200=226\)
g: \(=3+2^4+1=16+4=20\)
h: \(=36:4\cdot3+2\cdot25-1=27+50-1=27+49=76\)
1+3+3 mũ 2 + 3 mũ 3 + 3 mũ 4 + .... + 3 mũ 2020
Đặt \(A=1+3+3^2+3^3+3^4+...+3^{2020}\)
\(3\cdot A=3+3^2+3^3+3^4+3^5+...+3^{2020}+3^{2021}\)
\(3A-A=3+3^2+3^3+3^4+3^5+...+3^{2020}+3^{2021}-\left(1+3+3^2+3^3+3^4+...+3^{2020}\right)\)
\(2A=3^{2021}-1\)
\(\Rightarrow A=\dfrac{3^{2021}-1}{2}\)
#\(Toru\)
Câu gần giống bạn dựa váo đấy để làm.
tính tổng : S1 =1+6+6 mũ2 + 6 mũ 3 + ...6 mũ 64 S2=1+4+4 mũ 2 + 2 mũ 3 + ... 4 mũ 400 S3= 1 + 3 mũ 2 + 3 mũ 4 + 3 mũ 6 + 3 mũ 102 S4= 1 + 3 mũ 3 +3 mũ 5 + 3 mũ 7 + 3 mũ 103
a: 6S=6+6^2+...+6^65
=>5S=6^65-1
=>S=(6^65-1)/5
b: 4S=4+4^2+...+4^401
=>3S=4^101-1
=>S=(4^101-1)/3
c: 9S=3^2+3^4+...+3^104
=>8S=3^104-1
=>S=(3^104-1)/8
Thu gọn biểu thức
S1=4+4 mũ 2+2 mũ 3+2 mũ 4+....+2 mũ 2015
S2=3+3 mũ 2+3 mũ 3+....+3 mũ 2015
S3=3-3 mũ 3+3 mũ 5-.....+3 mũ 2013 - 3 mũ 2015+3 mũ 2017
S4=2 mũ n -1+2.2 mũ n -2+3.2 mũ n-3+....+(n-1).2+n
Hãy chứng minh P chia hết cho 4 biết P=3+3 mũ 2+3 mũ 3+3 mũ 4+.....+3 mũ 2020
A= 3 mũ 2020 - 3 mũ 2019 + 3 mũ 2018 - 3 mũ 2017 + .... +3 mũ 2 - 3 + 1
Bài 1: So sánh giá trị các biểu thức M và N biết:
a, 30 - 2 mũ 20 : 2 mũ 18 và N = 3 mũ 5 : (1 mũ 2021 + 2 mũ 3)
Bài 2: Thực hiện phép tính
a, 2 mũ 3 x 19 - 2 mũ 3 x 14 + 1 mũ 2020
b,10 mũ 2 - [ 60 : (5 mũ 6 : 5 mũ 4 - 3 x 5)]
c,160 : {17 + [3 mũ 2 x 5 - (14 + 2 mũ 7 : 2 mũ 4)}]
d,798 + 100 : [16 - 2(5 mũ 2 - 22)]
Bài 3:Tính giá trị của biểu thức có chứa chữ sau:
a, t mũ 2 + 5t - 6 khi t = 2
b,(a + b) mũ 2 - (b - a) mũ 3 + 2021 khi a = 5 ; b = a + 1
c, x mũ 3 - 3 x mũ 2 y + 3xy mũ 2 - y mũ 3 khi x = 3 ; y = 2
ALO CÁC BẠN ƠI GIÚP MÌNH VỚI Ạ!!!!
Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)
Bài 2 :
a) \(...=2^3\left(19-14\right)+1=8.5+1=41\)
b) \(...=100-\left[60:\left(5^2-15\right)\right]=100-\left[60:10\right]=100-6=94\)
c) \(...=160:\left[17+\left(9.5-\left(14+2^3\right)\right)\right]=160:\left[17+\left(45-22\right)\right]=160:\left[17+23\right]=160:40=4\)
d) \(...=798+100\left[16-2\left(25-22\right)\right]=798+100\left[16-2.3\right]=798+100.10=798+1000=1798\)
Cho S=3 mũ 0+3 mũ 2+3 mũ 4 +3 mũ 6 +.....+3 mũ 2020
a)Tính S
b)Chứng minh S chia hết cho 7
a, \(S=3^0+3^2+3^4+3^6+...+3^{2020}\)
\(\Leftrightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{2022}\)
\(\Leftrightarrow3^2S-S=3^{2022}-3^0\)
\(\Leftrightarrow9S-S=3^{2022}-1\)
\(\Leftrightarrow8S=3^{2022}-1\Leftrightarrow S=\frac{3^{2022}-1}{8}\)
b,\(S=3^0+3^2+3^4+3^6+...+3^{2020}\)
\(=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{2016}+3^{2018}+3^{2020}\right)\)
\(=\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+3^{2016}\left(1+3^2+3^4\right)\)
\(=\left(1+3^2+3^4\right)\left(1+3^6+...+3^{2016}\right)\)
\(=91\left(1+3^6+...+3^{2016}\right)=13.7\left(1+3^6+...+3^{2016}\right)⋮7\)
=> đpcm
Tham khảo :
a, S=30+32+34+36+...+32020
⇔32S=32+34+36+38+...+32022
⇔32S−S=32022−30
⇔9S−S=32022−1
⇔8S=32022−1⇔S=32022−18
b,S=30+32+34+36+...+32020
=(30+32+34)+(36+38+310)+...+(32016+32018+32020)
=(1+32+34)+36(1+32+34)+...+32016(1+32+34)
=(1+32+34)(1+36+...+32016)
=91(1+36+...+32016)=13.7(1+36+...+32016)⋮7 (
=> (đpcm)
=>99
Cho B = 3 + 3 mũ 2 +3 mũ 3 +...+3 mũ 2020
CMR:B chia hết cho 4
các pạn ơi mình cần gấp lắm lun
giải hộ mk với
Ta có:
\(B=3+3^2+3^3+...+3^{2020}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2019}+3^{2020}\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+...+3^{2019}\cdot4\)
\(B=4\cdot\left(3+3^3+...+3^{2019}\right)\) chia hết cho 4
=> đpcm
cảm ơn bạn rất rất nhiều:))))