Đặt \(A=1+3+3^2+3^3+3^4+...+3^{2020}\)
\(3\cdot A=3+3^2+3^3+3^4+3^5+...+3^{2020}+3^{2021}\)
\(3A-A=3+3^2+3^3+3^4+3^5+...+3^{2020}+3^{2021}-\left(1+3+3^2+3^3+3^4+...+3^{2020}\right)\)
\(2A=3^{2021}-1\)
\(\Rightarrow A=\dfrac{3^{2021}-1}{2}\)
#\(Toru\)
Câu gần giống bạn dựa váo đấy để làm.
A=1+3+3^2+...+3^2019�=1+3+3^2+...+3^2019
Từ 3^0 đến 3^2019 có 2020 số hạng, 2020 chia hết cho 2 nên ghép 2 số vào thành 1 nhóm, ta thu được 1010 nhóm.
A=(1+3)+(3^2+3^3)+...+(3^2018+3^2019)A=4+3^2.4+...+3^2018.4A=4(1+3^2+...+3^2018)�=(1+3)+(3^2+3^3)+...+(3^2018+3^2019)�=4+3^2.4+...+3^2018.4�=4(1+3^2+...+3^2018)
4(1+3^2+...3^2018)⋮44(1+3^2+...3^2018)⋮4 hay A⋮4.