Giải và biện luận pt a) 2m-1/x-2=m-3 b) mx^2 -2(m+1)x+m+1 c) mx-m-3/x+1=1
1)Giải và biện luận các phương trình sau
a) {mx+(m+1)y=m+1 b) {mx+(m-2)y=5 c){(m-1)x+2y=3m-1
{2x+my=2 {(m+2)x+(m+1)y=2 {(m+2)x-y=1-m
d) {(m+4)x-(m+2)y=4 e) {(m+1)x-2y=m-1 f){mx+2y+m+1
{(2m+1)x+(m-4)=m {m^2x-y=m^2+2m {2x+my=2m+4
2)Trong các hệ pt sau hãy:
i) Giải và biện luận ii)Tìm m thuộc Z để hệ có nghiệm duy nhất là nghiệm nguyên a) {(m+1)x-2y=m-1
{x+4(m+1)y=4m
b) {mx-y=1
{x+4(m+1)y=4m
c) {mx+y-3=3
{x+my-2m+1=0
3)Trong các hệ phương trình
i) Giải và biện luận
ii) Khi hệ có nghiệm (x,y), tìm hệ thức giữa x,y độc lập độc lập đối với m
a){mx+2y=m+1 b) {6mx+(2-m)y=3 c){mx+(m-1)y=m+1
{2x+my=2m+5 {(m-1)x-my=2 {2x+my=2
1)Giải và biện luận các phương trình sau
a) {mx+(m+1)y=m+1
{2x+my=2
b) {mx+(m-2)y=5
{(m+2)x+(m+1)y=2
c){(m-1)x+2y=3m-1
{(m+2)x-y=1-m
d) {(m+4)x-(m+2)y=4
{(2m-1)x+(m-4)=m
e) {(m+1)x-2y=m-1
{m^2x-y=m^2+2m
f) {mx+2)y=m+1
{2x+my=2m+5
2)Trong các hệ pt sau hãy:
i) Giải và biện luận ii)Tìm m thuộc Z để hệ có nghiệm duy nhất là nghiệm nguyên
a) {(m+1)x-2y=m-1
{x+4(m+1)y=4m
b) {mx-y=1
{x+4(m+1)y=4m
c) {mx+y-3=3
{x+my-2m+1=0
3)Trong các hệ phương trình
i) Giải và biện luận
ii) Khi hệ có nghiệm (x,y), tìm hệ thức giữa x,y độc lập độc lập đối với m
a){mx+2y=m+1
{2x+my=2m+5
b) {6mx+(2-m)y=3
{(m-1)x-my=2
c){mx+(m-1)y=m+1
{2x+my=2
Giải và biện luận pt:
a, \(\dfrac{mx+1}{x-1}=1\)
b, \(\dfrac{\left(m-2\right)x+3}{x+1}=2m-1\)
a)ĐKXĐ: \(x\ne1\)
\(\dfrac{mx+1}{x-1}=1\Rightarrow mx+1=x-1\Leftrightarrow\left(m-1\right)x=-2\)
Nếu \(m=1\Rightarrow0x=-2\left(VN\right)\)
Nếu \(m\ne1\)
\(\left(1\right)\Rightarrow x=\dfrac{-2}{m-1}\)
Vậy nếu m=1 thì phương trình vô nghiệm
n khác 1 thì phương trình có nghiệm \(x=\dfrac{-2}{m-1}\)
b) ĐKXĐ: x khác -1
\(\dfrac{\left(m-2\right)x+3}{x+1}=2m-1\Rightarrow\left(m-2\right)x+3=\left(x+1\right)\left(2m-1\right)\\ \Leftrightarrow\left(m-2\right)x+3=\left(2m-1\right)x+2m-1\Leftrightarrow\left(2m-1\right)x-\left(m-2\right)x=3-\left(2m-1\right)\\ \Leftrightarrow\left(m+1\right)x=4-2m\)
Nếu m =-1 thì \(0x=6\left(VN\right)\)
Nếu m khác -1 thì phương trình có nghiệm duy nhất \(x=\dfrac{4-2m}{m+1}\)
Giải và biện luận theo m sô nghiệm của pt
a)\(mx^2\)+ (2m-1)x+ m+2=0
b)\(\left(m-2\right)x^2\)-2(m+1)x+ m
Bài 1:giải và biện luận các pt sau
1) ( m²-5m)x=m²_6m+5
2) (3m-1)x+m=2x-m²
3) m²x +5m =(3m- 7) x +2
4) (x-m)²-( x+2m)( m+x)= 3
5) ( x-m + 1)( x-m)-(x+2)²=5m-7
6) ( x+m)(m-2) + (mx-1)m=2m
7) ( m²-1)x=3m+3
Cho hệ pt \(\left\{{}\begin{matrix}mx-y=2\\mx+my=5\end{matrix}\right.\)
a. Giải và biện luận hệ pt
b. Tìm m để hệ có nghiệm thỏa mãn: x+y= 1- \(\dfrac{m^{2^{ }}}{m^2+3}\)
Bài 1: Giải và biện luận các phương trình sau:
a) m(m-x)= 3(x+3)-6m
b) mx-3m=2x-3
c) (m^2 -9)x=m^2 +3m
Bài 2: Giải và biện luận các phương trình sau:
a) m(m-1)=2(2x+1)
b) (m^2 - 9)x=m^2 +3m
c) m(m-1)= 2(4-x)
d) (m^2 -3m+2)x= m-2
Các cậu giúp tớ với ạ, không cần làm hết đâu ạ, mng biết câu nào thì làm hộ tớ với nhé, plss!
Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.
1) Giải và biện luận phương trình:
a)
m.(mx+1) = x.(m+2)+2
b)
(mx-m-3) / (x+1) = 1
2) Tìm m để PT có nghiệm duy nhất:
(n+2)/(n-m) = (n+1)/(n-1)
Các bạn, anh chị làm ơn giúp mình với!!!
1) Giải và biện luận phương trình:
a) m.(mx+1) = x.(m+2) +2
b) (mx-m-3) / (x+1) = 1
2) Tìm m để PT có nghiệm duy nhất:
(n+2) / (n-m) = (n+1) / (n-1)