\(y^3-2x-2=x\left(x+1\right)^2\)
Giải pt nghiệm nguyên
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1.Giải pt \(\frac{1}{\left(2x+1\right)^2}+\frac{1}{\left(2x+2\right)^2}=3\)
2.Tìm nghiệm nguyên của pt \(x^3+y^3-x^2y-xy^2=5\)
\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)
\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)
2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)
TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)
TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)
TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
Vậy......
bạn mai anh làm đúng rồi mình xét thiếu trường hợp . nhưng nên phân tích thành (x+y)(x-y)2 dễ hơn
Giải PT nghiệm nguyên : \(x^3+2x^2+3x+1=\left(y+4\right)^3\)
Dùng định lý kẹp nhé
có 2x2 + 3x + 1 = (x + 3/4)2 + 7/16 > 0
<=> x3 + 2x2 + 3x + 1 > x3 (1)
có x2 >= 0
<=> x3 + 3x2 + 3x + 1 >= x3 + 2x2 + 3x + 1 (2)
Từ (1) và (2) => x3 + 2x2 + 3x + 1 = x3 + 3x2 + 3x + 1
<=> x = 0
Thay vào biểu thức được y = -3
Vậy nghiệm nguyên của phương trình là (x;y) = (0;-3)
Cái phần "
có 2x2 + 3x + 1 = (x + 3/4)2 + 7/16 > 0
<=> x3 + 2x2 + 3x + 1 > x3 (1)
" bị sai
đổi thành 5x2+2>0 <=> x3 + 2x2 + 3x + 1 > (x-1)3
thử thêm với trường hợp x3 + 2x2 + 3x + 1 = x3 được x = -1 => y = -1
Vậy nghiêm nguyên của phương trình là (x;y) = (0;-3) ; (-1;-1)
\(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\) . Giải pt nghiệm nguyên
2x^2 + y^2 + 3xy + 3x + 2y + 2 = 0
<=> 16x^2 + 8y^2 + 24xy + 24x + 16y + 16 = 0
<=> (4x)^2 + 24x(y+1) + 8y^2 + 16y + 16 = 0
<=> (4x)^2 + 24x(y+1) + [3(y + 1)]^2 - [3(y + 1)]^2 + 8y^2 + 16y + 16 = 0
<=> (4x + 3y + 3)^2 - 9y^2 - 18y - 9 + 8y^2 + 16y + 16 = 0
<=> (4x + 3y + 3)^2 - y^2 - 2y - 1 + 8 = 0
<=> (4x + 3y + 3)^2 - (y + 1)^2 = - 8
<=> (y + 1)^2 - (4x + 3y + 3)^2 = 8
<=> (y + 1 +4x + 3y + 3)(y + 1 - 4x - 3y - 3) = 8
<=> 4(x + y + 4)( - 4x - 2y - 2) = 8
<=> (x + y + 4)( 2x + y + 1) = -1
=>
{x + y + 4 = -1
{2x + y + 1 = 1
=> x = 2 và y = - 4
{x + y + 4 = 1
{2x + y + 1 = - 1
=> x = - 2 và y = 2
vậy nghiệm (x;y) = (2 ; - 4) (-2; 2)
Giải phương trình:
\(x^3+x+6=2\left(x+1\right)\sqrt{3+2x-x^2}\)
Giải hệ \(\left\{{}\begin{matrix}\left|x\right|+y=-1\\x^2+y^2=m\end{matrix}\right.\). Tìm m để hệ pt có nghiệm
Giải pt nghiệm nguyên dương: \(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)
Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được
\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)
Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc
\(2y^2+x^2y+x+3x^2-3xy=0\)
\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)
Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x
Ta có \(\Delta=-8y^3-15y^2-6y+1\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)
mà y nguyên dương => y thuộc rỗng
=> Pt đã cho ko có nghiệm nguyên dương
Giải PT nghiệm nguyên \(\left(x-y\right)\left(2x+y+1\right)+9\left(y-1\right)=13\)
1.Giải pt \(\dfrac{1}{\left(2x+1\right)^2}+\dfrac{1}{\left(2x+2\right)^2}=3\)
2.Tìm nghiệm nguyên của pt x3+y3-x2y-xy2=5
Bài 1:
Đặt 2x+1=a
Theo đề, ta có: \(\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}=3\)
=>3a^2(a+1)^2=a^2+2a+1+a^2
=>3a^2(a^2+2a+1)-2a^2-2a-1=0
=>3a^4+6a^3+a^2-2a-1=0
=>(a^2+a-1)(3a^2+3a+1)=0
=>\(a\in\left\{\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)
=>\(2x+1\in\left\{\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)
=>\(2x\in\left\{\dfrac{-3+\sqrt{5}}{2};\dfrac{-3-\sqrt{5}}{2}\right\}\)
hay \(x\in\left\{\dfrac{-3+\sqrt{5}}{4};\dfrac{-3-\sqrt{5}}{4}\right\}\)
Giải pt nghiệm nguyên\(x^2+\left(x+1\right)^2=y^4+\left(y+1\right)^4\)
khai triển và rút gọn 2 vế ta được x(x+1)=y4+2y3+3y2+2y
<=> x(x+1)=y2(y+1)2+2y(y+1)
<=> x2+x+1=(y2+y+1)2 (1)
nếu x>0 thì từ x2<x2+x+1<(x+1)2 => (1) không có nghiệm nguyên x>0
nếu x=0 hoặc x=-1 thì từ (1) => y2+y+1 = \(\pm\)1 \(\Leftrightarrow\hept{\begin{cases}y=0\\y=-1\end{cases}}\)
ta có nghiệm (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)
nếu x<-1 thì từ (x+1)2<x2+x+1<x2
=> (1) không có nghiệm nguyên x<-1
tóm lại phương trình đã cho có 4 nghiệm nguyên (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)
giải pt nghiệm nguyên sau : \(6\left(y^2-1\right)+3\left(x^2+y^2z^2\right)+2\left(z^2-9x\right)=0\)