x^2-5x-4y^2+10y
\(\hept{\begin{cases}x^2+4y^2=5\\4x^2y+8xy^2+5x+10y=1\end{cases}}\)
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
\(\hept{\begin{cases}x^2+4y^2=5\\4x^2y+8xy^2+5x+10y=1\end{cases}}\)
\(\hept{\begin{cases}x^2+4y^2=5\\4x^2y+8xy^2+5x+10y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2y\right)^2-4xy=5\\4xy\left(x+2y\right)+5\left(x+2y\right)=1\end{cases}}\)
Đặt \(\hept{\begin{cases}x+2y=a\\4xy=b\end{cases}}\)
Ta thu được hệ \(\hept{\begin{cases}a^2-b=5\\ab+5a=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=a^2-5\\a\left(a^2-5\right)+5a=1\end{cases}}\)
Giải pt 2 tìm đc a -> b -> dễ
\(\text{2xy+4y^2+5x+10y}\)
Phân tích đa thức thành nhân tử
\(=2xy+5x+4y^2+10y\)
\(=x\left(2y+5\right)+2y\left(2y+5\right)\)
\(=\left(x+2y\right)\left(2y+5\right)\)
\(=2x\left(x+2y\right)+5\left(x+2y\right)=\left(x+2y\right)\left(2x+5\right)\)
a, x^2-y^2-2y-1
b, 5x-10y-x^2+4y^2
c, x^2-4x+3
d, x^3-9x^2y + 9xy^2-3xy^2
e, x^4 +64
a,=x^2-[y-1]^2
=[x-y+1] [x+y-1]
b,=5[x-2y]-[x-2y].[x+2y]
=[x-2y].[5-x-2y]
Viết các biểu thức sau dưới dạng bình phương của 1 tổng , 1 hiệu :
a) 5x^2 + y^2 + z^2 + 4xy - 2xz
b) 9x^2 + 25 - 12xy + 2y^2 - 10y
c) 13x^2 + 4x - 12xy + 4y^2 + 1
d) x^2 + 4y^2 + 4x - 4y +5
tìm giá trị nhỏ nhất:
A=5x^2+10y^2-18xy-6x-4y+18
Giải hệ phương trình :\(\left\{{}\begin{matrix}x^2+4y^2-5=0\\4x^2y+8xy^2+5x+10y-1=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+2y\right)^2-4xy=5\\4xy\left(x+2y\right)+5\left(x+2y\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2-4b=5\\4ab+5a=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}4b=a^2-5\\a\left(a^2-5\right)+5a=1\end{matrix}\right.\)
\(\Rightarrow a^3=1\)=> a=1 => 4b= 1 -5 =4=> b = -1
=>\(\left\{{}\begin{matrix}x+2y=1\\xy=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=1\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=-\dfrac{1}{2}\\x=2\end{matrix}\right.\end{matrix}\right.\)
Thực hiện phép tính:
a) \(\dfrac{2}{5}xy\left(x^2y-5x+10y\right)\)
b) \(\left(x^2-1\right)\left(x^2+2x+y\right)\)
c) \(\left(x+3y\right)^2\)
d) \(\left(4x-y\right)^3\)
e) \(\left(x^2-2y\right)\left(x^2+2y\right)\)
g) \(18x^4y^2z:10x^4y\)
h) \(\left(x^3y^3+\dfrac{1}{2}x^2y^3-x^3y^2\right):\dfrac{1}{3}x^2y^2\)
i) \(\left(6x^3-7x^2-x+2\right):\left(2x+1\right)\)
k) \(\dfrac{5x-1}{3x^2y}+\dfrac{x+1}{3x^2y}\)
l) \(\dfrac{3x+1}{x^2-3x+1}+\dfrac{x^2-6x}{x^2-3x+1}\)
m) \(\dfrac{2x+3}{10x-4}+\dfrac{5-3x}{4-10x}\)
n) \(\dfrac{x}{x^2+2x+1}+\dfrac{3}{5x^2-5}\)
o) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
p) \(\dfrac{4x+2}{15x^3y}\dfrac{5y-3}{9x^2y}+\dfrac{x+1}{5xy^3}\)
q) \(\dfrac{2x-7}{10x-4}-\dfrac{3x+5}{4-10x}\)
r) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
x) \(\dfrac{4y^2}{11x^4}.\left(-\dfrac{3x^2}{8y}\right)\)
y) \(\dfrac{x^2-4}{3x+12}.\dfrac{x+4}{2x-4}\)
z) \(\left(x^2-25\right):\dfrac{2x+10}{3x-7}\)
t) \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
w) \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
c: \(=x^2+6xy+9y^2\)
e: \(=x^4-4y^2\)
Tìm giá trị x để đa thức:
3x2+4y2-5x2+6y2-7x2-10y2-5 có giá trị -230
\(3x^2+4y^2-5x^2+6y^2-7x^2-10y^2-5\)\(=\left(3x^2-5x^2-7x^2\right)+\left(4y^2+6y^2-10y^2\right)-5\)
\(=-9x^2-5=-\left(9x^2+5\right)=-230\)
\(\Rightarrow9x^2+5=230\Rightarrow9x^2=225\Rightarrow x^2=25\)=> x = 5 hoặc x = -5
cho điểm đi rồi trả lời.không thì thôi.
\(3x^2+4y^2-5x^2+6y^2-7x^2-10y^2-5\)
\(=\left(3-5-7\right)x^2+\left(4+6-10\right)y^2-5\)
\(=-9x^2-5\)
=> \(-9x^2-5=-230\)
=> \(-9x^2=-225\)
=> \(x^2=25\)
=> \(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)