Tìm x,y,z
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz = 810
Nhằm tạo công ăn việc làm
Tìm x,y,z biết
1. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz=-30
2.\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(x^2+y^2-z^2\)=-12
3.\(\frac{x}{3}=\frac{y}{2}=\frac{z}{4}\)và xyz=192
Tìm x,y,z biết
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\) và 2x-3y+z=6
\(b.\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x+y+z=49
\(c.\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\)và 2x+3y-z=50
\(d.\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz=810
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
tìm x;y;z biết:
a)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và xyz=-30
b)\(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}\) và x2+y2+z2=200
Đặt \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}=kak\left(kak\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=4kak\\y=3kak\\z=5kak\end{cases}}\)
Mà \(x^2+y^2+z^2=200\)
\(\Leftrightarrow\left(4kak\right)^2+\left(3kak\right)^2+\left(5kak\right)^2=200\)
\(\Leftrightarrow16.kak^2+9.kak^2+25.kak^2=200\)
\(\Leftrightarrow kak^2.\left(16+9+25\right)=200\)
\(\Leftrightarrow kak^2.50=200\)
\(\Leftrightarrow kak^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}kak=2\\kak=-2\end{cases}}\)
+) Với \(kak=2\)thì \(\hept{\begin{cases}x=4kak=8\\y=3kak=6\\z=5kak=10\end{cases}}\)
+) Với \(kak=-2\)thì \(\hept{\begin{cases}x=4kak=-8\\y=3kak=-6\\z=5kak=-10\end{cases}}\)
Vậy ...
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Ta có : \(xyz=-30\)
\(\Leftrightarrow2k\times3k\times5k=-30\)
\(\Leftrightarrow30k^3=-30\)
\(\Leftrightarrow k^3=-1\)
\(\Leftrightarrow k=-1\)
Thay vào ta được :
\(\hept{\begin{cases}x=2k=-2\\y=3k=-3\\z=5k=-5\end{cases}}\)
Vậy ...
\(b,\frac{x}{4}=\frac{y}{3}=\frac{z}{5}\)
\(\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{16+9+25}\)
\(=\frac{200}{50}=4\)
\(\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}=4\)
Đến đây bn tính nốt nhé@_@
Giải các hệ phương trình sau:
a) \(\hept{\begin{cases}x^3+y^3+x^2\left(y+z\right)=xyz+14\\y^3+z^3+y^2\left(x+z\right)=xyz-21\\z^3+x^3+z^2\left(x+y\right)=xyz+7\end{cases}}\)
b)\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}}\)
Bài b nhé bạn!
\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)
Trừ lại từng phương trình trong hệ:
\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)
Chia lại từng phương trình trong hệ mới, được:
\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)
Xong rồi đó!!!
Tìm x,y,z
1. \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)và 5z-3x-4y=50
2.
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz =-30
xin lỗi mik ko bít câu này! Ngại quá!
Tìm các số xyz biết rằng :
a ) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) và \(5x+y-2z=28\)
b ) \(3x=2y,7y=5z,x-y+z=32\)
c ) \(\frac{x}{3}=\frac{y}{4},\frac{y}{3}=\frac{z}{5},2x-3y+z=6\)
d ) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và \(x+y+z=49\)
e ) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và \(2x+3y-z=50\)
g ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và xyz = 810
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tĩ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)
Suy ra
x = (-2) . 9 = -18
y = (-2) . 12 = -24
z = (-2) . 15 = -30
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra
x = 2 . 10 = 20
y = 2 . 6 = 12
z = 2 . 21 = 42
g)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
→ x=2k ; y= 3k ; z= 5k
Ta có xyz=810
=> 2k . 3k .5k = 810
30.k3 = 810
k3 = 810 : 30
k3 = 27
=> k = 3
Với k=3 Suy ra
x = 2 . 3 = 6
y = 3 . 3 = 9
z = 3 . 5 = 15
Tìm x,y,z. Làm theo cách đặt k dùm em nhakk
m) \(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\)và 3x+5y+7z=123
n) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x+y+z=49
p) \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)và xyz= -108
r) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và xy+yz+zx=104
s) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)và x2-xy+3yz=54
t) \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)và x2+y2-z2=585
u) \(\frac{x}{2}=\frac{y}{3}\frac{z}{4}\)và x3+y3+z3=792
m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
Do đó: x=8; y=10; z=7
n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
Tìm x,y,z biết: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và xyz=810
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k,y=3k,z=5k\)
Ta có:
\(xyz=810\\ \Rightarrow2k.3k.5k=810\\ \Rightarrow30k^3=810\\ \Rightarrow k^3=810:30\\ \Rightarrow k^3=27\\ \Rightarrow k=3\)
Vậy:
x = 2k = 2.3 = 6
y = 3k = 3.3 = 9
z = 5k = 5.3 = 15
bài 1: tìm các số x,y,z biết:
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2z =28
b)3x=2y; 7y=5z ; x-y+z+32
c) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x+3y-z=50
d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz=810
a/
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)
b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)
\(\Rightarrow x=20;y=30;z=42\)
d) Đặt \(\frac{x}{2}=k\Rightarrow x=2k\); \(\frac{y}{3}=k\Rightarrow y=3k\); \(\frac{z}{5}=k\Rightarrow z=5k\)
Thay x=2k, y=3k, z=5k vào xyz=810 ta được:
\(2k.3k.5k=810\)
\(30k^3=810\)
\(k^3=\frac{810}{30}=27\)
\(\Rightarrow k=3\)
Do đó: x = 2k \(\Rightarrow\)x = 2.3=6
y = 3k\(\Rightarrow\)y = 3.3=9
z = 5k \(\Rightarrow\)z = 5.3=15
Vậy x=6; y=9; z=15