phan tich da thuc thanh nhan tu
\(\left(x-y\right)^3-1-3\left(x-y\right)\left(x-y-1\right)\)
phan tich da thuc sau thanh nhan tu :
\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
Ta có (x^2 + y^2 )^3 + (z^2 – x^2 )^3 – (y^2 + z^2 )^3
= (x^2 + y^2 )^3 + (z^2 – x^2 )^3 + (-y^2 - z^2 )^3
Ta thấy x^2 + y^2 + z^2 – x^2 – y^2 – z^2 = 0
=> áp dụng nhận xét ta có: (x^2+y^2 )^3+ (z^2 -x^2 )^3 -y^2 -z^2 )^3
= 3(x^2 + y^2 ) (z^2 –x^2 ) (-y^2 – z^2 )
= 3(x^2+y^2 ) (x+z)(x-z)(y^2+z^2 )
phan tich da thuc thanh nhan tu B=\(\left(x^2-y^2+1\right)^3-x^6-y^6-1\)
phan tich da thuc thanh nhan tu
\(\left(x^2-y^2+1\right)^3-x^6-y^6-1\)
\(\left(2x-10\right).\left(x+10\right).\left(x+\sqrt{3}\right)=0\)
(Bai phan tich da thuc thanh nhan tu)
PTĐTTNT ??? :)) bn phân tích rồi đấy, đề là tìm x thôi
Giải ( suỵt :), đừng ai nhìn thấy ... :v
\(\left(2x-10\right)\left(x+10\right)\left(x+\sqrt{3}\right)=0\)
TH1 : \(2x-10=0\Leftrightarrow x=5\)
TH2 : \(x+10=0\Leftrightarrow x=-10\)
TH3 : \(x+\sqrt{3}=0\Leftrightarrow x=-\sqrt{3}\)( vô lí )
Vậy x = {5;-10}
sao lại "vô lí" vậy bạn
lp 8 chưa học số vô tỉ babe nhá :))
Phan tich da thuc thanh nhan tu
\(\left(xy+4\right)^2-4\left(x+y\right)^2\)
\(x^4-4x^3+8x^2-16x+16\)
phan tich da thuc thanh nhan tu :
a,(x-5)^2+(x-5)(x+5)-(5-x)(2x+1)
b,\(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
Câu a :
\(\left(x-5\right)^2+\left(x-5\right)\left(x+5\right)-\left(5-x\right)\left(2x+1\right)\)
\(=x^2-10x+25+x^2-25-10x-5+2x^2+x\)
\(=4x^2-19x-5\)
Câu b :
\(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=12x^2-9x-8x+6-2x+2+3x^2-3x-6x^2-6x+4x+4\)
\(=9x^2-24x+2\)
Phân tich da thuc thanh nhan tu
a)\(yz\left(y+z\right)+xz\left(z-x\right)-xy\left(x+y\right)\)
\(yz\left(y+z\right)+xz\left(z-x\right)-xy\left(x+y\right)\)
\(=-[xy(x+y)-yz(y+z)-zx(z-x)]\)
\(=-(y.[x(x+y)-z(y+z)]-zx(z-x))\)
\(=-[y.(x^2+xy-zy-z^2)-zx(z-x)]\)
\(=-[y.(x^2-z^2+xy-zy)-zx(z-x)]\)
\(=-(y.[(x+z)(x-z)+y.(x-z)]-zx(z-x))\)
\(=-[y.(x-z)(x+z+y)+zx(x-z)]\)
\(=[(x-z)[y(x+z+y)+zx]]\)
\(=-(x-z)(yx+yz+y2+zx)\)
\(=-(x-z)(yx+zx+yz+y2)\)
\(=-[(x-z)[x.(y+z)+y.(y+z)]]\)
\(=-(x-z)(y+z)(x+y)\)
phan tich da thuc thanh nhan tu ;
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)
\(=\left(x-y\right)\left[3\left(x+y\right)-2\left(x-y\right)\right]\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
phan tich da thuc thanh nhan tu
\(9\left(x+1\right)^2-\left(3x-2\right)^2\)
\(9\left(x+1\right)^2-\left(3x-2\right)^2\)
\(=9\left(x^2+2x+1\right)-\left(9x^2-12x+4\right)\)
\(=9x^2+18x+9-9x^2+12x-4\)
\(=30x+5\)
\(=5\left(6x+1\right)\)
\(9\left(x+1\right)^2-\left(3x-2\right)^2\)
\(=\left[3\left(x+1\right)+3x-2\right]\left[3\left(x+1\right)-3x+2\right]\)
\(=\left(3x+3+3x-2\right)\left(3x+3-3x+2\right)\)
\(=5\left(6x+1\right)\)
\(9\left(x+1\right)^2-\left(3x-2\right)^2\)
=\(\left(9x^2+18x+9\right)-\left(9x^2-12x+4\right)\)
=\(9x^2+18x+9-9x^2+12x-4\)
=\(5\left(6x+1\right)\)
MHƯ VẬY ĐÚNG KHÔNG