Những câu hỏi liên quan
VC
Xem chi tiết
NV
3 tháng 8 2017 lúc 20:25

mình ko bít

Bình luận (0)
NV
3 tháng 8 2017 lúc 20:25

mà mình mới lớp 6 thui ahihi

Bình luận (0)
BT
Xem chi tiết
TV
Xem chi tiết
NM
13 tháng 12 2021 lúc 15:50

\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

Bình luận (1)
TL
Xem chi tiết
NK
3 tháng 6 2015 lúc 11:02

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)\(\Leftrightarrow\)\(\frac{x+y}{xy}=\frac{z-\left(x+y+z\right)}{z\left(x+y+z\right)}\)\(\Leftrightarrow\)\(\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)

\(\Leftrightarrow\)(x + y)z(x + y + z) + (x + y)xy = 0

\(\Leftrightarrow\)(x + y) [z(x + y + z) + xy] = 0

\(\Leftrightarrow\)(x + y)[z(x + z) + y(x + z)] = 0

\(\Leftrightarrow\) (x + y)(y + z)(z + x) = 0

Trường hợp 1: x + y = 0\(\Leftrightarrow\)x = -y\(\Leftrightarrow\)x2015 = -y2015\(\Leftrightarrow\)\(\frac{1}{x^{2015}}=-\frac{1}{y^{2015}}\)\(\Leftrightarrow\)\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}=0\)

và x2015  + y2015 = 0. Do đó \(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)

Trường hợp 2: y + z  = 0 làm tương tự

Trường hợp 3: x + z  = 0 làm tương tự

Vậy bài toán được chứng minh.

Bình luận (0)
OD
7 tháng 11 2017 lúc 12:37

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn đừng làm như vậy nha

Bình luận (0)
H24
7 tháng 11 2017 lúc 12:43

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web

Bình luận (0)
H24
Xem chi tiết
HP
9 tháng 5 2021 lúc 21:11

Áp dụng BĐT BSC:

\(A=\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}\)

\(=\dfrac{\dfrac{1}{16}}{x}+\dfrac{\dfrac{1}{4}}{y}+\dfrac{1}{z}\)

\(\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x+y+z}=\dfrac{49}{16}\)

\(minA=\dfrac{49}{16}\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\dfrac{1}{4}}{x}=\dfrac{\dfrac{1}{2}}{y}=\dfrac{1}{z}\\x+y+z=1\end{matrix}\right.\)

\(\Leftrightarrow\left(x;y;z\right)=\left(\dfrac{1}{7};\dfrac{2}{7};\dfrac{4}{7}\right)\)

Bình luận (1)
NL
9 tháng 5 2021 lúc 21:55

\(P=\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}+\dfrac{49}{16}-\dfrac{49}{16}\)

\(P=\left(\dfrac{1}{16x}+\dfrac{49x}{16}\right)+\left(\dfrac{1}{4y}+\dfrac{49y}{16}\right)+\left(\dfrac{1}{z}+\dfrac{49z}{16}\right)-\dfrac{49}{16}\)

\(P\ge2\sqrt{\dfrac{49x}{16x.16}}+2\sqrt{\dfrac{49y}{4y.16}}+2\sqrt{\dfrac{49z}{z.16}}-\dfrac{49}{16}=\dfrac{49}{16}\)

Dấu "=" xảy ra khi...

Bình luận (0)
DA
Xem chi tiết
NV
Xem chi tiết
LM
17 tháng 4 2022 lúc 0:42

1. 1/x + 2/1-x = (1/x - 1) + (2/1-x - 2) + 3

= 1-x/x + (2-2(1-x))/1-x  + 3

= 1-x/x + 2x/1-x + 3    >= 2√2 + 3

Dấu "=" xảy ra khi x =√2 - 1

Bình luận (1)
LM
17 tháng 4 2022 lúc 0:48

2. a = √z-1, b = √x-2, c = √y-3 (a,b,c >=0)

=> P = √z-1 / z + √x-2 / x + √y-3 / y 

= a/a^2+1 + b/b^2+2 + c/c^2+3

a^2+1 >= 2a              => a/a^2+1 <= 1/2

b^2+2 >= 2√2 b          => b/b^2+2 <= 1/2√2

c^2+3 >= 2√3 c            => c/c^2+3 <= 1/2√3

=> P <= 1/2 + 1/2√2 + 1/2√3

Dấu = xảy ra khi a^2 = 1, b^2 = 2, c^2 =3

<=> z-1 = 1, x-2 = 2, y-3 = 3

<=> x=4, y=6, z=2

Bình luận (0)
TL
Xem chi tiết
H24
Xem chi tiết
PM
10 tháng 9 2018 lúc 19:06

Ta có: \(\sqrt{x^2+y^2}\ge\sqrt{\frac{1}{2}\left(x+y\right)^2}=\frac{\sqrt{2}}{2}\left(x+y\right).\)
Chứng minh tương tự rồi cộng vế với vế ta có:
\(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}\ge\frac{\sqrt{2}}{2}\left(x+y+x+z+y+z\right)\)

\(\Rightarrow2015\ge\sqrt{2}\left(x+y+z\right)\)
Ta có: \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{3}{\sqrt[3]{\left(x+y\right)\left(x+z\right)\left(y+z\right)}}\ge\frac{3}{\frac{x+y+x+z+y+z}{3}}=\frac{9}{2\left(x+y+z\right)}\)
\(\Rightarrow\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2.\frac{2015}{\sqrt{2}}}=\frac{9\sqrt{2}}{4030}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{2015\sqrt{2}}{6}\)

Bình luận (0)