Những câu hỏi liên quan
FM
Xem chi tiết
FM
16 tháng 10 2018 lúc 19:51

ĐKXĐ: \(x>0\)

Ta có:

\(-\sqrt{x}-2\left(x-\frac{1}{x}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)

\(\Leftrightarrow-\sqrt{x}+\frac{1}{2x\sqrt{x}}=\frac{1}{2x^3}+2x-\frac{2}{x}\)

\(\frac{\Leftrightarrow1}{2x\sqrt{x}}-\sqrt{x}=2\left(x-\frac{1}{x}+\frac{1}{4x^3}\right)\)

Đặt : \(\frac{1}{2x\sqrt{x}}-\sqrt{x}=a\Rightarrow a^2=x-\frac{1}{x}+\frac{1}{4x^3}\)

Khi đó pt đã cho trở thành:

\(a=2a^2\Leftrightarrow\orbr{\begin{cases}a=0\\a=\frac{1}{2}\end{cases}}\)

+) a = 0\(\Rightarrow x=\frac{1}{\sqrt{2}}\)

Tương tự

Bình luận (0)
NV
Xem chi tiết
TL
1 tháng 4 2020 lúc 10:53

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
EC
21 tháng 10 2020 lúc 21:37

Đk: \(\forall x\in R\)

Ta có:\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)

<=> \(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=\sqrt{1+2020^2+2.2020+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(1+2020\right)^2+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(2021-\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\frac{2021^2-2020}{2021}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=2021\)

Lập bảng xét dầu

x                   -2                   1 

x - 1   -         |           -          0       +

x + 2   -        0         +          |            -

Xét các TH xảy ra :

TH1: x \(\le\)-2 => pt trở thành: 1 - x - x - 2 = 2021

<=> -2x = 2022 <=> x = -1011 (tm)

TH2: \(-2< x\le1\) => pt trở thành: 1 - x + x + 2 = 2021

<=> 0x = 2018 (vô lí) => pt vô nghiệm

TH3: \(x>1\) => pt trở thành: x - 1 + x + 2 = 2021

<=> 2x = 2020 <=> x = 1010 (tm)

Vậy S = {-1011; 1010}

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
BT
4 tháng 8 2019 lúc 10:31

Đặt \(\sqrt{x}=t\left(t>0\right)\)

\(\Leftrightarrow\frac{1}{1+t^2}+\frac{2}{1+t}=\frac{2+t}{2t^2}\)

\(\Leftrightarrow\frac{1+t+2t+2t^2}{\left(1+t\right)\left(1+t^2\right)}=\frac{2+t}{2t^2}\)

\(\Leftrightarrow\frac{2t^2+3t+1}{\left(1+t\right)\left(1+t^2\right)}=\frac{2+t}{2t^2}\)

\(\Leftrightarrow\frac{\left(t+1\right)\left(2t+1\right)}{\left(1+t\right)\left(1+t^2\right)}=\frac{2+t}{2t^2}\)

\(\Leftrightarrow\frac{2t+1}{1+t^2}=\frac{2+t}{2t^2}\)

\(\Leftrightarrow2t^2\left(2t+1\right)=\left(2-t\right)\left(1+t^2\right)\)

\(\Leftrightarrow4t^3+2t^2=2+2t^2+1+t^3\)

\(\Leftrightarrow t=1\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)

Bình luận (0)
LH
Xem chi tiết
HP
Xem chi tiết
NC
Xem chi tiết
LP
Xem chi tiết
TN
27 tháng 8 2017 lúc 10:07

copy mà ko hiểu thì copy làm gì

#Lần sau copy nhớ ghi nguồn nếu tôn trọng công sức người khác

\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)

\(\Leftrightarrow\sqrt{\frac{42}{5-x}}-\sqrt{\frac{126}{14}}+\sqrt{\frac{60}{7-x}}-\sqrt{\frac{45}{5}}=0\)

\(\Leftrightarrow\frac{\frac{42}{5-x}-\frac{126}{14}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{60}{7-x}-\frac{45}{5}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)

\(\Leftrightarrow\frac{\frac{-3\left(3x-1\right)}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{-3\left(3x-1\right)}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)

\(\Leftrightarrow-3\left(3x-1\right)\left(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}\right)=0\)

Thấy: \(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}>0\)

\(\Rightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)

Bình luận (0)
LP
27 tháng 8 2017 lúc 9:11

ĐK: \(x< 5\)

Nhận xét: \(x=\frac{1}{3}\) nghiệm của phương trình

\(\frac{42}{5-x}\) đồng biến với x. x tăng thì 5-x giảm -> \(\frac{42}{5-x}\) tăng

\(\Rightarrow\sqrt{\frac{42}{5-x}}\) đồng biến với x 

\(\Leftrightarrow\sqrt{\frac{60}{7-x}}\) đồng biến với x

VT đồng biến với x, VP là hằng số. Nếu Phương Trình nghiệm thì nghiệm duy nhất là:

\(\Rightarrow\)Phương Trình có nghiệm là \(\frac{1}{3}\)

Bình luận (0)
LP
27 tháng 8 2017 lúc 10:13

Ok bạn 

Bình luận (0)
H24
Xem chi tiết
LV
28 tháng 10 2014 lúc 18:40

xin lỗi em mới lớp 8 ko trả lời dc

Bình luận (0)