Những câu hỏi liên quan
H24
Xem chi tiết
NV
Xem chi tiết
AA
25 tháng 5 2021 lúc 10:27

thay x=1 ;y=-1;z=2 vào biểu thức b) ta được:1.-1+(-1)\(^{^2}\).2\(^2\)+\(2^3\).\(1^3\)

=-1+1.4+8.1

=-1+4+8=11

Bình luận (0)
HT
Xem chi tiết
H24
27 tháng 4 2022 lúc 13:33

Thay x = 1 y = -1 z = 2 ta có

1.(-1) + (-1)2.22 + 23 .13 = 1.(-1) + 1 .4 + 8 .1 = 11

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 2 2017 lúc 15:11

Ta có:  x 3 + y 3 = ( x + y ) 2 < = > ( x + y ) ( x 2 − x y + y 2 − x − y ) = 0

Vì x, y nguyên dương nên x+y > 0, ta có:  x 2 − x y + y 2 − x − y = 0

⇔ 2 ( x 2 − x y + y 2 − x − y ) = 0 ⇔ x - y 2 + x - 1 2 + ( y - 1 ) 2 = 2

Vì x, y nguyên nên có 3 trường hợp:

+ Trường hợp 1:  x − y = 0 x - 1 2 = 1 ⇔ x = y = 2 , z = 4 y - 1 2 = 1

+ Trường hợp 2:  x − 1 = 0 x - y 2 = 1 ⇔ x = 1 , y = 2 , z = 3 y - 1 2 = 1

+ Trường hợp 3:  y − 1 = 0 x - y 2 = 1 x - 1 2 = 1 ⇔ x = 2 , y = 1 , z = 3

Vậy hệ có 3 nghiệm (1,2,3);(2,1,3);(2,2,4)

Bình luận (0)
LT
Xem chi tiết
LT
Xem chi tiết
NL
26 tháng 11 2017 lúc 20:09

bn gõ bài trong công thức trực quan ik, khó nhìn lắm, ko làm đc

Bình luận (1)
NN
29 tháng 11 2017 lúc 19:38

1) \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)

\(=x^2y^3-x^3y^2+y^2z^3-y^3z^2-z^2x^2\left(z-x\right)\)

\(=\left(y^2z^3-x^3y^2\right)-\left(y^3z^2-x^2y^3\right)-z^2x^2\left(z-x\right)\)

\(=y^2\left(z^3-x^3\right)-y^3\left(z^2-x^2\right)-z^2x^2\left(z-x\right)\)

\(=y^2\left(z-x\right)\left(z^2+zx+x^2\right)-y^3\left(z-x\right)\left(z+x\right)-z^2x^2\left(z-x\right)\)

\(=\left(z-x\right)\left[y^2\left(z^2+zx+x^2\right)-y^3\left(z+x\right)-z^2x^2\right]\)

\(=\left(z-x\right)\left[\left(y^2z^2+xy^2z+x^2y^2\right)-\left(y^3z+xy^3\right)-z^2x^2\right]\)

\(=\left(z-x\right)\left(y^2z^2+xy^2z+x^2y^2-y^3z-xy^3-z^2x^2\right)\)

\(=\left(z-x\right)\left[\left(y^2z^2-y^3z\right)-\left(x^2z^2-x^2y^2\right)+\left(xy^2z-xy^3\right)\right]\)

\(=\left(z-x\right)\left[y^2z\left(z-y\right)-x^2\left(z^2-y^2\right)+xy^2\left(z-y\right)\right]\)

\(=\left(z-x\right)\left[y^2z\left(z-y\right)-x^2\left(z-y\right)\left(z+y\right)+xy^2\left(z-y\right)\right]\)

\(=\left(z-x\right)\left(z-y\right)\left[y^2z-x^2\left(z+y\right)+xy^2\right]\)

\(=\left(z-x\right)\left(z-y\right)\left(y^2z-x^2z-x^2y+xy^2\right)\)

\(=\left(z-x\right)\left(z-y\right)\left[\left(y^2z-x^2z\right)-\left(x^2y-xy^2\right)\right]\)

\(=\left(z-x\right)\left(z-y\right)\left[z\left(y^2-x^2\right)-xy\left(x-y\right)\right]\)

\(=\left(z-x\right)\left(z-y\right)\left[z\left(y-x\right)\left(y+x\right)+xy\left(y-x\right)\right]\)

\(=\left(z-x\right)\left(z-y\right)\left(y-x\right)\left[z\left(y+x\right)+xy\right]\)

\(=\left(z-x\right)\left(z-y\right)\left(y-x\right)\left(yz+xz+xy\right)\)

Bình luận (0)
NN
29 tháng 11 2017 lúc 20:03

2) \(xyz-\left(xy+yz+xz\right)+\left(x+y+z\right)-1\)

\(=xyz-xy-yz-xz+x+y+z-1\)

\(=\left(xyz-xy\right)-\left(yz-y\right)-\left(xz-x\right)+\left(z-1\right)\)

\(=xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)\)

\(=\left(z-1\right)\left(xy-y-x+1\right)\)

\(=\left(z-1\right)\left[\left(xy-y\right)-\left(x-1\right)\right]\)

\(=\left(z-1\right)\left[y\left(x-1\right)-\left(x-1\right)\right]\)

\(=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)

Bình luận (0)
VC
Xem chi tiết
NT
27 tháng 10 2021 lúc 21:04

Bài 3: 

\(B=x^4-4x^3-2x^2+12x+9\)

\(=x^4-3x^3-x^3+3x^2-5x^2+15x-3x+9\)

\(=\left(x-3\right)\left(x^3-x^2-5x-3\right)\)

\(=\left(x-3\right)\left(x^3-3x^2+2x^2-6x+x-3\right)\)

\(=\left(x-3\right)^2\cdot\left(x+1\right)^2\)

\(=\left(x^2-2x-3\right)^2\)

Bình luận (0)
H24
27 tháng 10 2021 lúc 21:06

Bài 3: 

\(B=x^4-4x^3-2x^2+12x+9=\left(x^4+x^3\right)-\left(5x^3+5x^2\right)+\left(3x^2+3x\right)+\left(9x+9\right)=\left(x^3-5x^2+3x+9\right)\left(x+1\right)=\left[\left(x^3+x^2\right)-\left(6x^2+6x\right)+\left(9x+9\right)\right]\left(x+1\right)=\left(x^2-6x+9\right)\left(x+1\right)^2=\left(x-3\right)^2\left(x+1\right)^2=\left[\left(x-3\right)\left(x+1\right)\right]^2\)

Bình luận (0)
ND
Xem chi tiết
ND
29 tháng 8 2021 lúc 10:15

ai giúp em bài1 và phần b bài 2 với ạ

 

Bình luận (0)
H24
Xem chi tiết
TT
Xem chi tiết
NM
5 tháng 10 2021 lúc 8:26

\(3,=\left(x-y\right)^3+\left(y-x+x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3+\left(y-x\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-x+x-z\right)+\left(x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3-\left(x-y\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-z\right)-\left(z-x\right)^3+\left(z-x\right)^3\\ =3\left(y-x\right)\left(x-z\right)\left(y-z\right)\)

\(4,=\left(x^4+3x^3-x^2\right)+\left(3x^3+9x^2-3x\right)-\left(x^2+3x-1\right)\\ =x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)^2\)

Bình luận (0)