Những câu hỏi liên quan
AV
Xem chi tiết
AH
9 tháng 7 2021 lúc 22:33

Lời giải:
\(P=\frac{2(\sqrt{x}+1)-3}{\sqrt{x}+1}=2-\frac{3}{\sqrt{x}+1}\)

Vì $\sqrt{x}\geq 0$ với mọi $x\neq 1; x\geq 0$

$\Rightarrow \sqrt{x}+1\geq 1\Rightarrow \frac{3}{\sqrt{x}+1}\leq 3$

$\Rightarrow P\geq 2-3=-1$
Vậy $P_{\min}=-1$. Giá trị này đạt tại $x=0$

 

Bình luận (0)
SS
Xem chi tiết
NA
Xem chi tiết
AH
20 tháng 7 2019 lúc 11:35

Câu 1:

\(a-\sqrt{a}+1=a-2.\sqrt{a}.\frac{1}{2}+\frac{1}{2^2}+\frac{3}{4}\)

\(=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\)

Ta thấy \((\sqrt{a}-\frac{1}{2})^2\geq 0, \forall a\) không âm

\(\Rightarrow a-\sqrt{a}+1=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)

Vậy GTNN của biểu thức là $\frac{3}{4}$. Dấu "=" xảy ra khi \((\sqrt{a}-\frac{1}{2})^2=0\Leftrightarrow a=\frac{1}{4}\)

Bình luận (0)
AH
20 tháng 7 2019 lúc 11:37

Câu 2:

\(\sqrt{1+2a-a^2}=\sqrt{2-(a^2-2a+1)}=\sqrt{2-(a-1)^2}\)

Ta thấy \((a-1)^2\geq 0, \forall a\) thuộc tập xác định

\(\Rightarrow 2-(a-1)^2\leq 2\)

\(\Rightarrow \sqrt{1+2a-a^2}=\sqrt{2-(a-1)^2}\leq \sqrt{2}\)

Vậy GTLN của biểu thức là $\sqrt{2}$ khi \((a-1)^2=0\Leftrightarrow a=1\)

Bình luận (0)
AH
20 tháng 7 2019 lúc 11:38

Câu 3:

ĐK: $x\geq 1$

\(x-2\sqrt{x-1}=(x-1)-2\sqrt{x-1}+1\)

\(=(\sqrt{x-1}-1)^2\geq 0, \forall x\geq 1\)

Vậy GTNN của biểu thức là $0$

Dấu "=" xảy ra khi \((\sqrt{x-1}-1)^2=0\Leftrightarrow x=2\)

Bình luận (0)
H24
Xem chi tiết
CM
26 tháng 5 2019 lúc 17:26

\(M=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{2x+2\sqrt{x}+3\sqrt{x}+3}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}.\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2018}{\sqrt{x}+1}\)

Bình luận (0)
MQ
26 tháng 5 2019 lúc 18:16

\(\frac{\sqrt{x}+2018}{\sqrt{x}+1}=1+\frac{2017}{\sqrt{x}+1}\le2018\)

Dấu "=" xảy ra \(\Leftrightarrow\)

... 

Bình luận (0)
MH
Xem chi tiết
NL
13 tháng 5 2021 lúc 20:42

\(\sqrt{A}\ge0\) ; \(\forall A\) nên GTNN của \(\sqrt{A}\) là \(0\)

Dấu "=" xảy ra khi \(x=0\)

Bình luận (0)
SS
Xem chi tiết
MH
Xem chi tiết
H24
13 tháng 5 2021 lúc 19:50

*Max
Xét `P-4`
`=(4\sqrtx+3-4x-4)/(x+1)`
`=(-4x+4\sqrtx-1)/(x+1)`
`=(-(2\sqrtx-1)^2)/(x+1)<=0`
`=>P<=1`
Dấu "=" `<=>2\sqrtx=1<=>x=1/4`
*Min
Xét `P+1`
`=(4\sqrtx+3+x+1)/(x+1)`
`=(x+4\sqrtx+4)/(x+1)`
`=(\sqrtx+2)^2/(x+1)>=0`
`=>P>=-1`
Dấu "=" `<=>\sqrtx+2=0<=>\sqrtx=-2`(vô lý)
=>Không có giá trị nhỏ nhất.

Bình luận (0)
MT
Xem chi tiết
TL
9 tháng 10 2015 lúc 19:00

\(A=\frac{x-9+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}+\frac{25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}\)

\(A=\left(\sqrt{x}+3\right)+\frac{25}{\sqrt{x}+3}-6\ge2.\sqrt{\left(\sqrt{x}+3\right).\frac{25}{\sqrt{x}+3}}-6=4\)

Dấu "=" xảy ra <=> \(\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\) <=> \(\sqrt{x}+3=5\) <=> x = 4

Vậy....

Bình luận (0)
NA
Xem chi tiết