Tìm GTNN của biểu thức : B=x^2+xy+y^2-2x-2y+2019
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm GTNN của biểu thức : B=x^2+xy+y^2-2x-3y+2019
Ta có :
\(B=x^2+xy+y^2-2x-3y+2019\)
\(\Leftrightarrow4B=4x^2+4xy+4y^2-8x-12y+8076\)
\(\Leftrightarrow4B=\left(4x^2+4xy+y^2\right)-4\left(2x+y\right)+4+3y^2-4y+4022\)
\(\Leftrightarrow2B=\left(2x+y\right)^2-4\left(2x+y\right)+4+3\left(y^2-\frac{4}{3}y+\frac{4}{9}\right)+\frac{12062}{3}\)
\(\Leftrightarrow2B=\left(2x+y-2\right)^2+3\left(y-\frac{2}{3}\right)^2+\frac{12062}{3}\ge\frac{12062}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{2}{3}\)
Bạn kiểm tra lại nhé, mình k chắc có đúng k nữa !
Cho ba số dương x,y,z thỏa mãn x + y + z = \(\dfrac{2019}{\sqrt{5}}\). Tìm GTNN của biểu thức : H = \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)
C/m: \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
\(\Rightarrow2x^2+xy+2y^2\ge\dfrac{5}{4}\left(x^2+2xy+y^2\right)\)
\(\Leftrightarrow8x^2+4xy+8y^2\ge5x^2+10xy+5y^2\)
\(\Leftrightarrow3\left(x-y\right)^2\ge0\left(LĐ\right)\)
Vậy \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
CMTT: \(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\);
\(\sqrt{2z^2+zx+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Vậy H=\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2z^2}\ge\sqrt{5}\left(x+y+z\right)=2019\)Hmin=2019\(\Leftrightarrow x=y=z=\dfrac{\dfrac{2019}{\sqrt{5}}}{3}\)
tìm GTNN và GTLN của biểu thức A= √(2x+yz)+ √(2y+xz)+ √(2z+xy) với x+y+z=2
\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\frac{2x+y+z}{2}\)
cmtt => GTLN
Tìm max:
Ta có:
\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+xz}=\sqrt{\left(x+y\right)\left(x+z\right)}\)
\(\le\frac{2x+y+z}{2}\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\sqrt{2y+zx}\le\frac{2y+z+x}{2}\left(2\right)\\\sqrt{2z+xy}\le\frac{2z+x+y}{2}\left(3\right)\end{cases}}\)
Cộng (1), (2), (3) vế theo vế ta được
\(A\le\frac{2x+y+z}{2}+\frac{2y+z+x}{2}+\frac{2z+x+y}{2}=2\left(x+y+z\right)=4\)
Dấu = xảy ra khi \(x=y=z=\frac{2}{3}\)
Tìm min:
Ta có: \(\hept{\begin{cases}\sqrt{2x+yz}\ge0\\\sqrt{2y+zx}\ge0\\\sqrt{2z+xy}\ge0\end{cases}}\)
\(\Rightarrow A\ge0\)
Dấu = xảy ra khi \(\left(x,y,z\right)=\left(-2,2,2;2,-2,2;2,2,-2\right)\)
1.Tìm GTNN của biểu thức:
x2 + 2y2 - 2xy -2y - 2x +2019
\(A=x^2+2y^2-2xy-2y-2x+2019\)
\(A=x^2+y^2+y^2-2xy+2y-4y-2x+2019\)
\(A=\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+y^2-4y+4+2014\)
\(A=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y-2\right)^2+2014\)
\(A=\left(x-y-1\right)^2+\left(y-2\right)^2+2014\ge2014\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2-1=0\\y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Tim GTNN cua bieu thuc : B=x^2+xy+y^2-2x-3y+2019
Tìm GTNN , GTLn của biểu thức : A=\(\frac{8x+3}{4x^2+1}\)
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
BÀI 5 : CHO x-y=3 tìm giá trị của B=|x-6|+|y+1|
BÀI 6: Cho x-y=2 tìm gtnn của biểu thức C=|2x+1|+|2y+1|
BÀI 7: Cho 2x+y=3 tìm gtnn của biểu thức D=|2x+3|+|y+2|+2
cho x + 2y =1 Tìm GTNN của biểu thức A= x^2 + y^2 +xy
Tìm GTNN của biểu thức; x2+y2-xy-2y-2x+2022.
Tìm GTNN của biểu thức:
x2 + 2y2 - 2xy - 2y - 2x + 2019
\(A=x^2+y^2+1-2xy-2x+2y+y^2-4y+4+2014\)
\(=\left(x-y-1\right)^2+\left(y-2\right)^2+2014\ge2014\)
\(\Rightarrow A_{min}=2014\) khi \(\left\{{}\begin{matrix}y-2=0\\x-y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)