Chương I - Căn bậc hai. Căn bậc ba

H24

Cho ba số dương x,y,z thỏa mãn x + y + z = \(\dfrac{2019}{\sqrt{5}}\). Tìm GTNN của biểu thức : H = \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)

H24
21 tháng 2 2019 lúc 20:49

C/m: \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

\(\Rightarrow2x^2+xy+2y^2\ge\dfrac{5}{4}\left(x^2+2xy+y^2\right)\)

\(\Leftrightarrow8x^2+4xy+8y^2\ge5x^2+10xy+5y^2\)

\(\Leftrightarrow3\left(x-y\right)^2\ge0\left(LĐ\right)\)

Vậy \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

CMTT: \(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\);

\(\sqrt{2z^2+zx+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)

Vậy H=\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2z^2}\ge\sqrt{5}\left(x+y+z\right)=2019\)Hmin=2019\(\Leftrightarrow x=y=z=\dfrac{\dfrac{2019}{\sqrt{5}}}{3}\)

Bình luận (0)
MS
21 tháng 2 2019 lúc 20:50

Khos quas

Bình luận (2)

Các câu hỏi tương tự
PL
Xem chi tiết
PK
Xem chi tiết
AJ
Xem chi tiết
DN
Xem chi tiết
DA
Xem chi tiết
Xem chi tiết
PA
Xem chi tiết
NT
Xem chi tiết
HC
Xem chi tiết