tìm a , biết rằng:
a) 7467a chia hết cho 9
b) 46222a chia hết cho 3
c) 26a584 chia hết cho 9
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho A = 2 + 22 + 23 ...+ 220 . Chứng minh rằng:
a) A chia hết cho 2
b) A chia hết cho 3
c) A chia hết cho 5
b) A=2+22+23+...+220
A=(2+22)+(23+24)+...+(219+220)
A=3.2+3.23+...+3.219
A=3.(2+23+25+...+219)
⇒A⋮3
phần c) làm tương tự
Cho A = 2 + 22 + 23 ...+ 220 . Chứng minh rằng:
a) A chia hết cho 2
b) A chia hết cho 3
c) A chia hết cho 5
Em đang rất gấp ạ
a: Ta có: \(A=2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2+2^2+...+2^{19}\right)⋮2\)
b: Ta có: \(A=2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)
\(=3\cdot\left(2+2^3+...+2^{19}\right)⋮3\)
c) tham khảo:
M = 2 + 22 + 23 + ... + 220
= ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 217 + 218 + 219 + 220 )
= 2 . ( 1 + 2 + 22 + 23 ) + 25 . ( 1 + 2 + 22 + 23 ) + ... + 217 . ( 1 + 2 + 22 + 23 )
= 2 . 15 + 25 . 15 + ... + 217 .15
= 15 . 2 ( 1 + 24 + ... + 216 )
= 3 . 5 . 2 ( 1 + 24 + ... + 216 ) \(⋮\) 5
Lời giải:
a.
$A=2(1+2^1+2^2+...+2^{19})\vdots 2$
b.
$A=(2+2^2)+(2^3+2^4)+.....+(2^{19}+2^{20})$
$=2(1+2)+2^3(1+2)+....+2^{19}(1+2)$
$=2.3+2^3.3+...+2^{19}.3$
$=3(2+2^3+...+2^{19})\vdots 3$
c.
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{17}+2^{18}+2^{19}+2^{20})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{17}(1+2+2^2+2^3)$
$=2.15+2^5.15+....2^{17}.15$
$=15(2+2^5+...+2^{17})$
$=5.3.(2+2^5+...+2^{17})\vdots 5$
Tìm x biết x ϵ{50;108;1234;2020}
a)X-12 chia hết cho 2
b)X-27 chia hết cho 3
c)X+20 chia hết cho 5
d)X+36 chia hết cho 9
a) \(x\in\left\{50;108;1234;2020\right\}\)
b) \(x\in\left\{108\right\}\)
c) \(x\in\left\{50;2020\right\}\)
d) \(x\in\left\{108\right\}\)
a: 126 chia hết cho x
180 chia hết cho x
=>\(x\inƯC\left(126;180\right)\)
=>\(x\inƯ\left(18\right)\)
mà x>9
nên x=18
b: x chia hết cho 10
x chia hết cho 12
x chia hết cho 18
Do đó: \(x\in BC\left(10;12;18\right)\)
=>\(x\in B\left(180\right)\)
mà x<200
nên x=180
Viết một chữ số thích hợp vào ô trống để có số:
a)....86 chia hết cho 9
b)7....4 chia hết cho 3
c) 25...chia hết cho cả 3 và 5
d) 49...chia hết cho cả 2 và 5
a)..4..86 chia hết cho 9
b)7..1..4 chia hết cho 3
c) 25..5.chia hết cho cả 3 và 5
d) 49.0..chia hết cho cả 2 và 5
Bài 4: Chứng minh rằng:
a) \(4^{10}+4^7\) chia hết cho 65
b) \(10^{10}-10^9-10^8\) chia hết cho 89
Bài 5. Tìm số tự nhiên n để:
a) 5n+4 chia hết cho n
b) n+6 chia hết cho n+2
c) 3n+1 chia hết cho n-2
d) 3n+9 chia hết cho 2n-1
Bài 6: chứng minh rằng:
\(\overline{abab}\) chia hết cho 101
\(\overline{abc-\overline{cba}}\) chia hết cho 9 và 11
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
chứng minh rằng :
a) 1010 - 1 chia hết cho 9
b) 109 + 2 chia hết cho 3
c) tổng hai số chẵn liên tiếp không chia hết cho 4
d) tích của 2 số tự nhiên liêp tiếp bao giờ cũng là một số chẵn
e) tích hai số chẵn liên tiếp chia hết cho 8
a) Ta có: \(10^{10}=10...0\) nên \(10^{10}-1=10...0-1=99...9\)
Nên: \(10^{10}-1⋮9\)
b) Ta có: \(10^{10}=10...0\) nên: \(10^{10}+2=10...0+2=10...2\)
Mà: \(1+0+...+2=3\)
Nên: \(10^{10}+2⋮3\)
c) Gọi số chẵn đó \(a\) số chẵn tiếp theo là:\(a+2\)
Mà tổng của 2 số chẵn đó là:
\(a+a+2=2a+2=2\left(a+1\right)\) không chia hết cho 4 nên
Tổng của 2 số chẵn liên tiêp ko chia hết cho 4
d) Gọi hai số tự nhiên đó là: \(a,a+1\)
Tích của 2 số tự nhiên đó là:
\(a\left(a+1\right)=a^2+a\)
Nếu a là số lẻ thì \(a^2\) lẻ nên \(a^2+a\) là chẳn
Nếu a là số chẵn thì \(a^2\) chẵn nên \(a^2+a\) là chẵn
Vậy tích của hai số liên tiếp là chẵn
e) Gọi hai số đó là: \(2a,2a+2\)
Tích của hai số đó là:
\(2a\cdot\left(2a+2\right)=4a^2+4a=4a\left(a+1\right)\)
4a(a+1) chia hết cho 8 nên
Tích của hai số tự nhiên liên tiếp chia hết cho 8
d) Gọi một số tự nhiên bất kỳ là a
\(\Rightarrow\) Số tự nhiên liền kề là a+1
Nếu a là số lẻ thì a+1 là số chẵn
\(\Rightarrow a\left(a+1\right)\) là số chẵn
Nếu a là số chẵn thì \(a\left(a+1\right)\) là số chẵn
Vậy tích hai số TN liên tiếp bao giờ cũng là một số chẵn
e) Gọi hai số chẵn liên tiếp lần lượt là 2a và 2a+2 ( a là một số TN bất kỳ )
Ta có \(2a\left(2a+2\right)=2a.2\left(a+1\right)=4a\left(a+1\right)\)
Ta chứng minh được tích hai số TN liên tiếp bao giờ cũng là một số chẵn
\(\Rightarrow a\left(a+1\right)\) có dạng 2k ( k bất kỳ )
\(\Rightarrow2a\left(2a+2\right)=8k⋮8\)
Vậy tích hai số chẵn liên tiếp chia hết cho 8
thay x,y,z bằng chữ số thích hợpa 43x5 chia hết cho 3 . trong các số tìm được số nào chia hết cho 9b 5x4y chia hết cho 3 , 5 . trong các số tìm được số nào chia hết cho 9c 28xyz chia hết cho 2 , 5 và 9
a) x=0,3,6,9 trong đó x=6 thì chia hết cho 9
b) với y=0 =>x=0,3,6,9
Với y=5=> x=1,4,7
trong đó với (y,x)=(0,0),(0,9),(5,4) thì chia hết cho 9
c) z=0
x+y chia 9 dư 8
x+y=8,17. cái này nhiều lắm với x+y=17 thì (x,y)=(8,9),(9,8)
còn x+y=8 thì... bạn liệt kê ra là đc
Chúc bạn học tốt
HYC-25/1/2022
Chứng minh rằng:
a. 1110 - 1 chia hết cho 100
b. 9 . 10n + 18 chia hết cho 27
c. 16n - 15n - 1 chia hết cho 255