Những câu hỏi liên quan
TU
Xem chi tiết
LL
30 tháng 9 2016 lúc 13:26

A = 1 + 3 + 32 + 33 + ... + 32012

3A = 3 + 32 + 33 + 34 + ... + 32013

3A - A = (3 + 32 + 33 + 34 + ... + 32013) - (1 + 3 + 32 + 33 + ... + 32012)

2A = 32013 - 1

=> 2A + 1 = 32013 - 1 + 1

=> 2A = 32013

Bình luận (0)
PA
Xem chi tiết
NN
Xem chi tiết
UN
11 tháng 11 2016 lúc 21:02

Ta có: A = 1 + 2 + 22 + 23 + ....... + 2200

=> 2A = 2 + 22 + 23 + ....... + 2201

=> 2A - A = ( 2 + 22 + 23 + ....... + 2201 ) - ( 1 + 2 + 22 + 23 + ....... + 2200 ) 

=>        A = 2201 - 1 

=>  A + 1 = 2201

Bình luận (0)
AH
11 tháng 11 2016 lúc 21:03

A = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200

2A = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201

2A - A = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201 )

           -  ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200 )

A         = 2 ^ 201 - 1

=> A + 1 = 2 ^ 201

B = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005

3B = 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006

3B - B = ( 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006 )

            - ( 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005 )

2B      = 3 ^ 2006 - 3

=> 2B = 3 ^ 2006

Vậy 2B + 3 là lũy thừa của 3

Bình luận (0)
PT
11 tháng 11 2016 lúc 21:06

A=1+1+2+2^2+2^3+...+2^200=2=2+2+2^2+2^3+...+2^200=2^2+2^2+2^3+...+2^200

B chia hết cho 3=>2B chia hết cho 3, 3 chia hết cho 3 mà 2B+3 nên 2B+3 chia hết cho 3

Bình luận (0)
NH
Xem chi tiết
LH
9 tháng 8 2017 lúc 20:46

1) A = 1+2+2\(^2\) + ... + \(2^{200}\)

2A = 2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{201}\)

2A - A = 2 + 2\(^2\) +2\(^3\) + ... + \(2^{201}\) - 1 - 2 - ... - 2\(^{200}\)

A = 2\(^{201}\) - 1

A+1 = 2\(^{201}\)

Vậy a + 1 = 2\(^{201}\)

2) C = 3 + 3\(^2\) + 3\(^3\) + ... + 3\(^{2005}\)

3C = 3\(^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\)

3C - C = \(3^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\) - 3 - 3\(^2\) - 3\(^3\) - ... - 3\(^{2005}\)

2C = 3\(^{2006}\) - 3

2C+3 = 3\(^{2006}\)

Vậy 2C + 3 là luỹ thừa của 3 ( Đpcm )

Bình luận (0)
NH
Xem chi tiết
LL
30 tháng 9 2016 lúc 13:20

1.

A = 1 + 2 + 22 + 23 + ... + 2200

2A = 2 + 22 + 23 + 24 + ... + 2201

2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)

A = 2201 - 1

=> A + 1 = 2201 - 1 + 1

=> A + 1 = 2201

2.

B = 3 + 32 + 33 + ... + 32005

3B = 32 + 33 + 34 + ... + 32006

3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + ... + 32005)

2B = 32006 - 3

=> 2B + 3 = 32006 - 3 + 3

=> 2B + 3 = 32006

Bình luận (0)
KM
Xem chi tiết
NT
2 tháng 10 2016 lúc 20:42

Ta có:

\(A=3+3^2+3^3+...+3^{10}\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{11}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{11}\right)-\left(3+3^2+3^3+...+3^{10}\right)\)

\(\Rightarrow2A=3^{11}-3\)

\(\Rightarrow2A+3=3^{11}-3+3\)

\(\Rightarrow2A+3=3^{11}\)

Vậy \(2A+3=3^{11}\)

Bình luận (3)
PL
Xem chi tiết
DN
Xem chi tiết
NC
27 tháng 11 2019 lúc 14:20

Em kiểm tra lại đề bài nhé.

c Câu hỏi của luongngocha - Toán lớp 6 - Học toán với OnlineMath

b. Câu hỏi của son goku - Toán lớp 6 - Học toán với OnlineMath

a. Câu hỏi của Trần Thị Thanh Thảo - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
NT
11 tháng 8 2021 lúc 21:51

a: Ta có: \(A=1+3+3^2+3^3+...+3^{2015}\)

\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{2014}\cdot\left(1+3\right)\)

\(=4\cdot\left(1+3^2+...+3^{2014}\right)⋮4\)

b: Ta có: \(A=1+3+3^2+3^3+...+3^{2015}\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{2013}\left(1+3+3^2\right)\)

\(=13\cdot\left(1+3^3+...+3^{2013}\right)⋮13\)

Bình luận (0)
TC
11 tháng 8 2021 lúc 21:54

undefined

Bình luận (0)