Chứng minh rằng :
Với x,y ∈ Z thì [x+y]=[x]+[y]
chứng minh rằng nếu x/y=y/z=z/t thì (x+y+x/y+z+t)^3=x/y với y,z,t khác 0 và y+z+t khác 0
a) Chứng minh rằng nếu 2(x+y) = 5(y+z) = 3(z+x)
Thì \(\dfrac{x-y}{4}=\dfrac{y-z}{5}\)
b) Cho \(x^2=yz\) . Chứng minh rằng \(\dfrac{x^2+y^2}{y^2+z^2}=\dfrac{x}{z}\)
Chứng minh rằng nếu : \(\dfrac{x-y}{x+y}\) = \(\dfrac{z-x}{z+x}\) thì x2 = y.z
Mọi người giúp em với ạaaa
\(\dfrac{x-y}{x+y}=\dfrac{z-x}{z+x}\\ \Rightarrow\left(x-y\right)\left(z+x\right)=\left(x+y\right)\left(z-x\right)\\ \Rightarrow xz+x^2-yz-yx=xz-x^2+yz-yx\\ \Rightarrow xz-xz+x^2+x^2=yz+yz-yx+yx\\ \Rightarrow2x^2=2yz\\ \Rightarrow x^2=yz\)
Chứng minh rằng :
a , với mọi x ,y thuộc Z thì [x+y]=[x]+[y]
b,với x thuộc Z , y thuộc Q thì [x+y]=x+[y]
*chú ý : [y] là phần nguyên của y
Chứng minh rằng :
a , với mọi x ,y thuộc Z thì [x+y]=[x]+[y]
b,với x thuộc Z , y thuộc Q thì [x+y]=x+[y]
*chú ý : [y] là phần nguyên của y
\(a,\left|x+y\right|\ge0\)
\(\left|x\right|+\left|y\right|\ge0\)\(\Rightarrow\left|x+y\right|=\left|x\right|+\left|y\right|\)
a,
=> | x + y | = x + y hoặc (-x )+ (-y )
vì x , y thuộc Z => | x + y | = x + y (1)
|x| + |y| = x + y (2)
từ (1) và (2) => |x + y| = |x| + | y|
chứng minh rằng Với mọi sự thực x, y, z thì(x^2+y^2)^3-(y^2+z^2)^3+(z^2-x^2)^3=3.(x^2+y^2).(y^2+z^2).(x^2-z^2)
Cho x khác y khác z; x,y,z > 0 . Chứng minh rằng nếu y/x-z=x+y/z=x/y thì x=2y
Ta có \(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}\). Áp dụng tính chất dãy tỉ số bằng nhau
=>\(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}=\frac{y+x+y+x}{x-z+z+y}=\frac{2\left(x+y\right)}{x+y}=2\)
=>\(\frac{x}{y}=2=>x=2y\)
Có \(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}\left(x\ne y\ne z;x,y,z>0\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}=\frac{y+x+y+x}{x-z+z+y}=\frac{2\left(x+y\right)}{x+y}=2\)
\(\Rightarrow\frac{x}{y}=2\Rightarrow x=2y\left(đpcm\right)\)
Chứng minh rằng: Nếu A = \(\frac{x}{x+y+z}+\frac{y}{y+z+x}+\frac{z}{z+x+y}\) thì A không phải là số nguyên ( với x,y,z thuộc Z )
(x/x+y+z)+(y/y+z+x)+(z/z+x+y)
=(x/x+y+z)+(y/x+y+z)+(z/x+y+z)
=x+y+z/x+y+z=A
=>A=1
Vậy A là số nguyên
chứng minh rằng
a) (x-y)+(y-z)+(z-x)= (y+z-2x)+(z+x-2y)+(x+y-2z) thì x=y=z
Đề sai bạn ơi!
Chứng minh rằng :
a. ( x + y + z )^3 -x^3 - y^3 -z^3 = 3(x+y)(y+z)(x+z)
b. Nếu x + y + z = 0 thì x^3 + y^3 + z^3 = 3xyz
\(a,\left(x+y+z\right)^3-x^3-y^3-z^3\\ =\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\\ =\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =x^3+y^3+z^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =\left(x+y\right)\left(3xy+3xz+3yz+3z^2\right)\\ =3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\\ =3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(b,x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz+2xy-3xy\right)\\ =0\left(x^2+y^2+z^2-xz-yz-xy\right)=0\\ \Leftrightarrow x^3+y^3+z^3=3xyz\)