Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

ST

Chứng minh rằng : 
a. ( x + y + z )^3 -x^3 - y^3 -z^3 = 3(x+y)(y+z)(x+z)

b. Nếu x + y + z = 0 thì x^3 + y^3 + z^3 = 3xyz

NM
25 tháng 9 2021 lúc 9:38

\(a,\left(x+y+z\right)^3-x^3-y^3-z^3\\ =\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\\ =\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =x^3+y^3+z^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =\left(x+y\right)\left(3xy+3xz+3yz+3z^2\right)\\ =3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\\ =3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

 

Bình luận (0)
NM
25 tháng 9 2021 lúc 9:42

\(b,x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz+2xy-3xy\right)\\ =0\left(x^2+y^2+z^2-xz-yz-xy\right)=0\\ \Leftrightarrow x^3+y^3+z^3=3xyz\)

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
HL
Xem chi tiết
TM
Xem chi tiết
LG
Xem chi tiết
HV
Xem chi tiết
HT
Xem chi tiết
DT
Xem chi tiết
QN
Xem chi tiết