Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
H24
30 tháng 9 2018 lúc 12:03

GUID Partition Table ?

Bình luận (0)
H24
Xem chi tiết
CM
Xem chi tiết
TA
Xem chi tiết
NN
Xem chi tiết
TT
9 tháng 9 2015 lúc 22:14

ĐK : tự làm :

Đặt \(\sqrt{2x+3x-\sqrt{x+2}}=a;\sqrt{2x+4+\sqrt{x+2}}=b\)

TA có : \(b^2-a^2=1+2\sqrt{x+2}=a+b\)

=> b - a = 1 => b = 1 + a 

=> \(\sqrt{2x+4+\sqrt{x+2}}=1+\sqrt{2x+3-\sqrt{x+2}}\)

=> \(2x+4+\sqrt{x+2}=1+2x+3-\sqrt{x+2}+2\sqrt{2x+3-\sqrt{x+2}}\)

=> \(2\sqrt{x+2}=2\sqrt{2x+3-\sqrt{x+2}}\)

=> \(x+2=2x+3-\sqrt{x+2}\)

=> \(\sqrt{x+2}=x+1\)

Bình luận (0)
H24
Xem chi tiết
NM
9 tháng 11 2021 lúc 15:23

\(ĐK:-5\le x\le3\)

Đặt \(\sqrt{x+5}+\sqrt{3-x}=t\ge0\Leftrightarrow t^2-8=2\sqrt{15-2x-x^2}\), PTTT:

\(t-t^2+8-2=0\\ \Leftrightarrow t^2-t-6=0\\ \Leftrightarrow t=3\left(t\ge0\right)\\ \Leftrightarrow2\sqrt{15-2x-x^2}=3^2-8=1\\ \Leftrightarrow60-8x-4x^2=1\\ \Leftrightarrow4x^2+8x-59=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+3\sqrt{7}}{2}\left(tm\right)\\x=\dfrac{-2-3\sqrt{7}}{2}\left(tm\right)\end{matrix}\right.\)

Vậy nghiệm pt là ...

Bình luận (0)
H24
Xem chi tiết
CT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NL
26 tháng 11 2021 lúc 21:14

ĐKXĐ:...

a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)

\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)

Pt trở thành:

\(3a^2-2b^2+ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)

\(\Leftrightarrow3a=2b\)

\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)

\(\Leftrightarrow...\)

 

Bình luận (0)
NL
26 tháng 11 2021 lúc 21:16

b. ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)

Phương trình trở thành:

\(a^2+2+ab=3a+b\)

\(\Leftrightarrow a^2-3a+2+ab-b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)