Những câu hỏi liên quan
HK
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
PT
20 tháng 1 2017 lúc 9:43

\(x+y=2\)

\(\Leftrightarrow x=2-y\left(1\right)\)

Giả sử: \(x.y\le1\)

\(\Leftrightarrow\left(2-y\right).y\le1\)

\(\Leftrightarrow y^2-2.y+1\ge0\),

\(\Leftrightarrow\left(y-1\right)^2\ge0\)

\(\Leftrightarrow y\ge1\)

Từ (1) và (2) suy ra:\(x.y\le1\)

Bình luận (2)
H24
Xem chi tiết
VT
27 tháng 7 2016 lúc 20:06

Vì x+y=2 -> x=2-y 
ta có: xy=(2-y)y 
=2y-y^2 
=-y^2+2y-1+1 
=-(y-1)^2+1 
Vì (y-1)^2>=0 -> -(y-1)^2<=0(với mọi y) 
-> -(y-1)^2+1 <=1(với mọi y) 
Vậy xy<=1

Bình luận (0)
H3
27 tháng 7 2016 lúc 20:09

ta có xy<=(x+y)^2/4 
cm 
<=> 4xy<=x^2+y^2+2xy 
<=> (x^2+y^2-2xy)>=0 
<=>(x-y)^2>=0 (dúng0) 
áp dụng xy<=(x+y)^2/4=2^2/4=1 
daứ = xảy ra là x=y=1 

Bình luận (0)
AW
6 tháng 4 2017 lúc 14:40

bang bang de

Bình luận (0)
HN
Xem chi tiết
DH
4 tháng 4 2015 lúc 22:10

Câu a) 

Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b

Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1

Câu b) Áp dụng BĐT Bunhiacopxki ta có

(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2

Dấu "=" xảy ra <=> x = y

Bình luận (0)
TL
4 tháng 4 2015 lúc 22:19

câu1 : cần sửa lại là A + B2 \(\ge\frac{1}{2}\)

Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)

<=> A + B + 2A.B \(\le\) 2. (A + B2)

<=> 0 \(\le\) A + B - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng

b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm

Bình luận (0)
DH
Xem chi tiết
DH
2 tháng 4 2017 lúc 20:44

Áp dụng bất đẳng thức cho 2 số dương 2x và 8y ta có:

2x+8y\(\ge\)2\(\sqrt{2x.8y}\)=2\(\sqrt{16xy}\)

Mà x.y=4 => 2x+8y \(\ge\)2\(\sqrt{2x.8y}\)=2\(\sqrt{16.4}\)

=> 2.8=16

Vậy 2x+8y\(\ge\)16

Bình luận (0)
NQ
Xem chi tiết
AH
25 tháng 6 2024 lúc 21:50

1/

Xét hiệu $(x+1)^2-4x^2=(x+1)^2-(2x)^2=(x+1-2x)(x+1+2x)$

$=(1-x)(3x+1)$
Do $x\in (0;1)$ nên $1-x>0; 3x+1>0$

$\Rightarrow (x+1)^2-4x^2>0\Rightarrow (x+1)^2> 4x^2$

Bình luận (0)
AH
25 tháng 6 2024 lúc 21:58

2/

Xét hiệu:

$(1+x+y)^2-4(x^2+y^2)=x^2+y^2+1+2x+2y+2xy-4x^2-4y^2$

$=1+2x+2y+2xy-3x^2-3y^2$

$=2x(1-x)+2y(1-y)+1+2xy-x^2-y^2$
Vì $x,y\in (0;1)$ nên: 

$2x(1-x)>0$

$2y(1-y)>0$

$(x-1)(y-1)>0\Rightarrow xy+1> x+y=x.1+y.1> x^2+y^2$

$\Rightarrow 1+xy-x^2-y^2>0$

$\Rightarrow 1+2xy-x^2-y^2>0$

Suy ra: $2x(1-x)+2y(1-y)+1+2xy-x^2-y^2>0$

$\Rightarrow (1+x+y)^2> 4(x^2+y^2)$

Bình luận (0)
H24
Xem chi tiết
CC
Xem chi tiết