chứng minh 315 + 314 + 313 chia hết cho 13
giúp mình với
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho minh hỏi A=1+3+32+33+...+3101 chứng minh A chia hết cho 13
giúp minh với, ko mình thi rồi nên sợ lắm
\(A=1+3+3^2+3^3+...+3^{101}\)
\(=>3A=3+3^2+3^3+3^4+...+3^{102}\)
\(=>3A-A=\left(3+3^2+3^3+3^4+...+3^{102}\right)-\left(1+3+3^2+3^3+...+3^{101}\right)\)
\(=>2A=3^{102}-1\)
\(=>A=\dfrac{3^{102}-1}{2}\)
chứng minh rằng
A = \(3+3^2+3^3+3^4+...+3^{60}\)
a) A chia hết cho 3
b) A chia hết cho 4
c) A chia hết cho 13
giúp mình mik cần gấp
a) \(A=3+3^2+3^3+...+3^{60}\)
Vì \(3⋮3;3^2⋮3;3^3⋮3;...;3^{60}⋮3\)
\(\Rightarrow3+3^2+3^3+...+3^{60}⋮3\\ \Rightarrow A⋮3\)
b) \(A=3+3^2+3^3+...+3^{60}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\\ =3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\\ =\left(1+3\right)\left(3+3^3+...+5^{59}\right)\\ =4\left(3+3^3+...+5^{59}\right)⋮4\)
chứng minh 1+3+32+33+34+...+32023+32024 chia hết cho 13
giúp mik với !!😥😥😥
Đặt \(A=1+3+3^2+3^3+3^4+\cdot\cdot\cdot+3^{2023}+3^{2024}\)
\(=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+\dots+(3^{2022}+3^{2023}+3^{2024})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+\dots+3^{2022}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+\dots+3^{2022}\cdot13\\=13\cdot(1+3^3+3^6+\dots+3^{2022})\)
Vì \(13\cdot(1+3^3+3^6+\dots+3^{2022})\vdots13\)
nên \(A\vdots13\)
\(\Rightarrowđpcm\)
Đặt S=1+3+32+33+34+⋅⋅⋅+32023+32024
S=(1+3+32)+(33+34+35)+⋯+(32022+32023+32024)
S=13+33(1+3+32)+...+32022(1+3+32)
S=13+33.13+...+32022.13
S=13(33+...+32022) ⋮ 13
Vậy S⋮13
315/316×313/314×316/315×317/314
Đơn giản như đang giỡn :
=315.313.316.317/315.314.316.317
=313/314
hok tốt k nhé bạn .
\(\frac{315}{316}\cdot\frac{313}{314}\cdot\frac{316}{315}\cdot\frac{317}{314}\)
= \(\frac{315\cdot313\cdot316\cdot317}{316\cdot314\cdot315\cdot314}\)
=\(\frac{1\cdot313\cdot1\cdot317}{1\cdot314\cdot1\cdot314}\)(Bước này là bước rút gọn)
= \(\frac{99221}{98596}\)
#Kiều
\(\frac{315}{316}.\frac{313}{314}.\frac{316}{315}.\frac{317}{314}\)\(=\frac{315.313.316.317}{316.314.315.314}\)
Sau khi rút gọn:
\(=\frac{313.317}{314.314}\)
chứng minh :
A=1+3+3^2+3^3+............................+3^97+3^98 chia hết cho 13
giúp me :((
\(=\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13\left(1+...+3^{96}\right)⋮13\)
Tính nhanh giá trị của biểu thức sau :
315/316 * 313/314 * 316/315 * 317/313
315/316*313/314*316/315*317/313
=315*313*316*317/316*314*315*313
=317/314
Tick cho mik nha
Chứng minh rằng:
\(313^5.299-313^6.36\)chia hết cho7
giúp mình với
= 313^5(299-313.36)
- 313^5.(-72).7 chia hết cho 7(điều phải chứng minh)
A=1+2+2^2+2^3.....2^101
chứng minh A chia hết cho 13
giúp mik với
A=1+2+2^2+2^3.....2^101
chứng minh A chia hết cho 13
giúp mik với