Những câu hỏi liên quan
DL
Xem chi tiết
H24
Xem chi tiết
H24
10 tháng 7 2019 lúc 9:17

#)Giải :

Ta có : \(a+b+c=2p\)

\(\Rightarrow b+c=2p-a\)

\(\Rightarrow\left(b+c\right)^2=\left(2p-a\right)^2\)

\(\Rightarrow b^2+c^2+2bc=4p^2-4pa+a^2\)

\(\Rightarrow2bc+b^2+c^2-a^2=4p\left(p-a\right)\)

\(\Rightarrowđpcm\)

Bình luận (0)
PU
Xem chi tiết
TN
26 tháng 6 2016 lúc 20:51

a)Ta có:

\(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\)

Do \(\left(a-b\right)^2\ge0\),nên\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

b)Xét \(\left(a+b+c\right)^2+\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\)

Khai triển và rút gọn ta được:\(3\left(a^2+b^2+c^2\right)\)

Vậy \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

Bình luận (0)
LH
Xem chi tiết
NT
19 tháng 2 2022 lúc 8:21

a: \(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(c^2+d^2\right)\left(a^2+b^2\right)\)

b: Bạn ghi lại đề đi bạn

Bình luận (0)
KZ
Xem chi tiết
KZ
7 tháng 12 2018 lúc 23:15

10. a) Ta có : (a + b)2 + (a – b)2 = 2(a2 + b2). Do (a – b)\(^2\) ≥ 0, nên (a + b)\(^2\) ≤ 2(a2 + b2).

b) Xét : (a + b + c)\(^2\) + (a – b)\(^2\) + (a – c)\(^2\) + (b – c)\(^2\)

. Khai triển và rút gọn, ta được : 3(a\(^2\) + b\(^2\) + c\(^2\)).

Vậy : (a + b + c)\(^2\) ≤  3( a\(^2\) + b\(^2\) + c\(^2\)).

Bình luận (0)
H24
7 tháng 12 2018 lúc 23:22

Cách khác : Biến đổi tương đương

a, \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)luôn đúng

b, \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\le3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)

Bình luận (0)
PH
Xem chi tiết
GN
Xem chi tiết
UN
Xem chi tiết
NC
9 tháng 2 2016 lúc 15:53

em chi moi hoc lop 5 thoi a

ma oi nhe

 

 

Bình luận (0)
BV
9 tháng 2 2016 lúc 15:54

thì lấy về phải pt  a)keo 2 ra ngoai 

                            b)keo 3 ra ngoai 

thì ta sẽ có điều cần chứng minh

 còn = thì khi ẩn = 0

Bình luận (0)
BV
9 tháng 2 2016 lúc 15:56

b) mình sai kéo 2 ra ngoài nhé

Bình luận (0)
ND
Xem chi tiết
HD
Xem chi tiết
AH
22 tháng 7 2017 lúc 17:27

Bài 1:

Biến đổi tương đương thôi:

\((ac+bd)^2+(ad-bc)^2=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2=(a^2+b^2)(c^2+d^2)\)

Ta có đpcm

Bài 2: Áp dụng kết quả bài 1:

\((a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2\geq (ac+bd)^2\) do \((ad-bc)^2\geq 0\)

Dấu bằng xảy ra khi \(ad=bc\Leftrightarrow \frac{a}{c}=\frac{b}{d}\)

Bình luận (0)