B=1+5+5 mũ 2 +5 mũ 3 + ... + 5 mũ 150
Thu gọn các tổng sau:
a) A = 1 + 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
b) B = 1 + 4 + 4 mũ 2 + 4 mũ 3 + 4 mũ 4 + ... + 4 mũ 100
c) C = 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 6 + .... + 5 mũ 200
d) D = 3 mũ 100 + 3 mũ 101 + 3 mũ 102 + .... + 3 mũ 150
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) Có A=\(1+3+3^2+3^3+....+3^{100}\)
\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)
Bài b/c/d : bn cứ lm tương tự.
B=1+2+5+7+...+2025
C=2+4+6+8+...+2026
D=1+2 mũ 1+ 2 mũ 2+ 2 mũ 3+.... 2 mũ 150
E=1+4 mũ 1+ 4 mũ 2+.....+4 mũ 400
F= 1+ 4 mũ 1+ 4 mũ 2+....+4 mũ 400
G= 1 +5 mũ 1+ 5 mũ 2+ 5 mũ 3+....+5 mũ300
Hai bài trên áp dụng công thức với khoảng cách là 2.
Ta có:
\(D=1+2^1+2^2+2^3+.....+2^{150}\)
\(\Rightarrow2D-D=\left(2+2^2+2^3+2^4+.....+2^{151}\right)-\left(1+2+2^2+2^3+....+2^{150}\right)\)
\(\Rightarrow D=2^{151}-1\)
\(E=1+4^1+4^2+....+4^{400}\)
\(\Rightarrow4E-E=\left(4+4^2+4^3+....+4^{401}\right)-\left(1+4^1+4^2+....+4^{400}\right)\)
\(\Rightarrow E\left(4-1\right)=4^{401}-1\Leftrightarrow E=\frac{4^{401}-1}{4-1}\)
Các câu còn lại làm tương tự
A=2 mũ 3 + 2 mũ 4 + 2 mũ 5 + 2 mũ 6 + 2 mũ 7 +.....+ 2 mũ 90
B=1+5+5 mũ 2 + 5 mũ 3 +5 mũ 4 +......+5 mũ 50
C=1/5 +1/5 mũ 2 + 1/5 mũ 3 + 1/5 mũ 4 +1/5 mũ 6 +......+1/5 mũ 102
D=1/5 +1/5 mũ 3 + 1/5 mũ 4 +1/5 mũ 5 + 1/5 mũ 6 +1/5 mũ 105
A = 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90
2A = 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100
2A - A = ( 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100 ) - ( 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90 )
A = 2^100 - 2^3
B = 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50
5B = 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51
5B - B = ( 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51 ) - ( 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50 )
4B = 5^51 - 1
B = 5^51 - 1 / 4
1. 5x + x = 39 - 3 mũ 11 : 3 mũ 9.
2. 5x + x = 150 : 2 + 3.
3. 7x - x = 5 mũ 21 : 5 mũ 19 + 3 . 2 mũ 2 - 1
4. 6x + x = 5 mũ 11 : 5 mũ 9 + 3
Bài 1:
1; 5\(x\) + \(x\) = 39 - 311 : 39
\(x\).(5 + 1) = 39 - 32
\(x.6\) = 39 - 9
\(x.6\) = 30
\(x\) = 30 : 6
\(x\) = 5
Vậy \(x\) = 5
2; 5\(x\) + \(x\) = 150 : 2 + 3
\(x\).(5 + 1) = 75 + 3
\(x.6\) = 78
\(x\) = 78 : 6
\(x\) = 13
Vậy \(x=13\)
3; 7\(x\) - \(x\) = 521 : 519 + 3.22 - 1
\(x.\left(7-1\right)\) = 52 + 6 - 1
\(x\).6 = 25 + 6 - 1
\(x.6\) = 31 - 1
\(x.6\) = 30
\(x\) = 30 : 6
\(x=5\)
Vậy \(x=5\)
1. Cho A = 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
Tìm số tự nhiên n biết 2A + 3 = 3 mũ n
2. Chứng minh rằng A là một lũy thừa của 2 với:
A = 4+ 2 mũ 2 + 2 mũ 3 + .... + 2 mũ 20
3. Thu gọn các tổng sau:
a) A = 1 + 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
b) B = 1 + 4 + 4 mũ 2 + 4 mũ 3 + 4 mũ 4 + ... + 4 mũ 100
c) C = 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 6 + .... + 5 mũ 200
d) D = 3 mũ 100 + 3 mũ 101 + 3 mũ 102 + .... + 3 mũ 150
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
1. Cho A = 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
Tìm số tự nhiên n biết 2A + 3 = 3 mũ n
2. Chứng minh rằng A là một lũy thừa của 2 với:
A = 4+ 2 mũ 2 + 2 mũ 3 + .... + 2 mũ 20
3. Thu gọn các tổng sau:
a) A = 1 + 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
b) B = 1 + 4 + 4 mũ 2 + 4 mũ 3 + 4 mũ 4 + ... + 4 mũ 100
c) C = 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 6 + .... + 5 mũ 200
d) D = 3 mũ 100 + 3 mũ 101 + 3 mũ 102 + .... + 3 mũ 150
Ai tk mk mk tk lại ai nhanh nhất nhé
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
1)180 : 12 - 3 mũ 2 =
2)2 . 5 mũ 2 - 36 : 3 mũ 2 =
3) 3 mũ 3 . 19 - 3 mũ 3 . 12 =
4) 3 . 5 mũ 2 - 16 : 2 mũ 2 =
5) 20 - [ 30 - ( 5 - 1) mũ 2] =
6) ( 51 . 63 - 37 . 51) : 51 =
7) 120 - [130 - (5 - 1) mũ 3] =
8) 150 - [ 10 mũ 2 -( 14 - 11 ) mũ 2 . 2007 mũ 0] =
9) 3 mũ 2 . ( 200 : 4 + 13. 5 ) - 3 mũ 2 . 15 =
10) 25 . { 610 : [ 600 - ( 260 + 5.7) ] } =
11) 2 mũ 2 + [ 10 mũ 5 : 10 mũ 4 -( 2 + 3.2) ] =
12) 3 mũ 4 + [ 75 : 15 + ( 10 - 8 ) mũ 4 + 5 mũ 3 =
13) 130 - 2 . [ ( 30 + 15 ) : 3 + 6]
3. 33.19-33.12=33.(19-12)=33.7=189
4. 3.52-16:22=3.52-24:22=3.25-4=75-4=71
C-HOẠT động luyện tập
1.Tính;
a)(2/3)mũ 3; b)(-2 và 3/4) mũ 2; c)(0,6) mũ 4; d)(-1/2) mũ 4; e)(-1/2) mũ 5
2.Tìm x, biết:
a) x : (3/4) mũ 3 = (3/4) mũ 2 b) (2/5) mũ 5 * x = (2/5) mũ 8
4.viết các số: (0,36) mũ 8 và (0,216) mũ 4 dưới dạng một lũy thừa của cơ số 0,6
5.Tính:
a) (3*5) mũ 2; b)(-4/11) mũ 2; c)(0,5) mũ 4 * 6 mũ 4; d) (-1/3) mũ 5 : (1/6) mũ 5
6.Tính giá trị các biểu thức sau:
a)6 mũ 2 * 6 mũ 3/3 mũ 5; b)25 mũ 1 * 4 mũ 2/5 mũ 5 * (-2) mũ 5; c)(0,125)mũ 5 * (2,4) mũ 5/(-0,3) mũ 5 * (0,01) mũ 3; d)(-2 và 3/4 + 1/2) mũ 2
8.Tính:
a) (2/5 + 3/4) mũ 2; b)(5/4 - 1/6) mũ 2
Bài 8:
a: \(\left(\dfrac{2}{5}+\dfrac{3}{4}\right)^2=\left(\dfrac{8+15}{20}\right)^2=\left(\dfrac{23}{20}\right)^2=\dfrac{529}{400}\)
b: \(\left(\dfrac{5}{4}-\dfrac{1}{6}\right)^2=\left(\dfrac{15}{12}-\dfrac{2}{12}\right)^2=\left(\dfrac{13}{12}\right)^2=\dfrac{169}{144}\)
rút gọn : 1, 7 mũ 3. 5 mũ 2 . 5 mũ 4 . 7 mũ 6 : (5 mũ 5 . 7 mũ 8)
2, 3 mũ 3 . a mũ 7 . 3 . a mũ 2 : (3 mũ 4 . a mũ 6)
3, 7 mũ 3 . 11 mũ 4 . a mũ 8 . b mũ 7 : 7 mũ 2 . 11 mũ 2 . a mũ 5 . b mũ 6
4, (2 mũ 5 . a mũ 4 . b mũ 3). (2 mũ 3 . a . b mũ 5) : 2 mũ 7 . a mũ 3 . b mũ 7
1; 73.52.54.76:(55.78)
= (73.76).(52.54) : (55.78)
= 79.56: (55.78)
= (79:78).(56:55)
= 7.5
= 35
2; 33.a7.3.a2:(34.a6)
= (33.3).(a7.a2): (34.a6)
= 34.a9: (34.a6)
= (34:34).(a9:a6)
= a3
3; 73.114.a8.b7: 72.112.a5.b6
= (73:72).(114.112).(a8.a5).(b7.b6)
= 7.116.a13.b13