Cho A= x+16/ căn x+3
Tìm GTNN của A
Cho A= x+16/ căn x+3
Tìm GTNN của A
B1, Cho x, y>0 thỏa mãn x+y=4/3. Tìm gtnn của A=3/x+1/3y
B2, Cho x,y,z thỏa mãn x2 + 2y2 + 10z2= 2015. Tìm gtnn của K= 2xy - 8yz - 2zx
B3, Cho x>=3. Tìm gtnn của M=x + 1/x2
B4, Cho a,b,c >0 thỏa mãn a+b+c=3. Tìm gtln của S=căn (3a+bc) + căn (3b+ca) + căn (3c+ab)
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
tìm gtnn của A=căn(x-2 (căn x-3))
Đề là: \(A=\sqrt{x-2\sqrt{x-3}}\) đúng ko em?
ĐKXĐ: \(x\ge3\)
\(A=\sqrt{x-3-2\sqrt{x-3}+1+2}=\sqrt{\left(\sqrt{x-3}-1\right)^2+2}\ge\sqrt{2}\)
\(A_{min}=\sqrt{2}\) khi \(x=4\)
tìm gtnn của A=căn(x-2 (căn x-3))
Tìm các số không âm x,y sao cho biểu thức A đạt gtnn A= x+ y- căn x-3. căn y- 2021
Đk:\(x\ge3;y\ge2021\)
\(A=x+y-\sqrt{x-3}.\sqrt{y-2021}\)
\(\Leftrightarrow A=\left(x-3\right)-\sqrt{x-3}.\sqrt{y-2021}+\dfrac{1}{4}\left(y-2021\right)+\dfrac{3}{4}\left(y-2021\right)+2024\)
\(\Leftrightarrow A=\left(\sqrt{x-3}-\dfrac{1}{2}\sqrt{y-2021}\right)^2+\dfrac{3}{4}\left(y-2021\right)+2024\ge2024\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}y-2021=0\\\sqrt{x-3}-\dfrac{1}{2}\sqrt{y-2021}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=2021\\x=3\end{matrix}\right.\) (tm)
Vậy...
Tìm GTNN của A=căn (x-1) + căn (2x-2) + căn (3x-3) + 15
GTNN của A = 15 \(\Leftrightarrow\)x = 1
Cho a, b, c >= 0 tm a²+b²+c²=6. Tìm GTNN của P = căn(4-x²) + căn(4-y²) + căn (4-z²)
Câu 1:
A = (3 - y)(4 - x)(2y + 3x)
6A = (6 - 2y)(12 - 3x)(2y + 3x)
Ta có: \(\hept{\begin{cases}0\le x\le4\\0\le y\le3\end{cases}\Leftrightarrow\hept{\begin{cases}4-x\ge0\\3-y\ge0\\2y+3x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}12-3x\ge0\\6-2y\ge0\\2y+3x\ge0\end{cases}}}\)
Áp dụng BĐT cô-si ta được:
\(\left(12-3x\right)+\left(6-2y\right)+\left(2y+3x\right)\ge3.\sqrt[3]{\left(12-3x\right)\left(6-2y\right)\left(2y+3x\right)} \)
\(\Leftrightarrow3.\sqrt[3]{6A}\le18\Leftrightarrow A\le36\)
Dấu = xảy ra khi:
12 - 3x = 6 - 2y = 2y + 3x
=> \(\hept{\begin{cases}3x+4y=6\\6x+2y=12\end{cases}\Rightarrow\hept{\begin{cases}x=2\left(n\right)\\y=0\left(n\right)\end{cases}}}\)
Vậy.....
1) So sánh A và B:
A = căn bậc hai của 225 - 1/căn bậc hai của 5 - 1
B = căn bậc hai của 196 - 1/căn bậc hai của 6
2) Tìm GTNN của A = 2 + căn bậc hai của x
3) Tìm GTNN của B = 5 - 2 . căn bậc hai của x - 1
Ai nhanh nhất mình tick nha! Làm ơn giải giùm nhaaaaaaaaaaaaaaaaaaaaaaaa!
bạn bấm mấy tính là đc chứ j
**** nha bn
**** nha
A = căn bậc hai của 225 - 1/căn bậc hai của 5 - 1
Tức là :
\(\sqrt{244}\)và \(\sqrt{4}\)
tất nhiên ........
B = căn bậc hai của 196 - 1/căn bậc hai của 6
Tất nhiên ......
2) Tìm GTNN của A = 2 + căn bậc hai của x
\(A=2+\sqrt{x}\)
= \(\sqrt{x+2}\)
3) Tìm GTNN của B = 5 - 2 . căn bậc hai của x - 1
\(B=5-2.\sqrt{x-1}\)
= \(4-2\sqrt{x}\)