Những câu hỏi liên quan
3T
Xem chi tiết
FF
3 tháng 4 2020 lúc 22:02

tk chó tuấn

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
3 tháng 4 2020 lúc 22:15

fan FA chó cái cục shit nhà bạn :)) 

\(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\)

Áp dụng BĐT AM-GM cho 2 số không âm:

\(VT\ge2\sqrt{\left|a-b\right|\cdot\frac{12}{\left|a-b\right|}}=4\sqrt{3}\)

Dấu "=" tự xét.

Bình luận (0)
 Khách vãng lai đã xóa

Ta có

\(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\)

áp dụng bất đẳng thức Cô si 

\(\left|a-b\right|+\frac{12}{\left|a-b\right|}\ge2\sqrt{\left|a-b\right|.\frac{12}{\left|a-b\right|}}=4\sqrt{3}\)

lại bất giải thưởng tháng r . thằng nào hack của t giả đi .WHy not me nè

Bình luận (0)
 Khách vãng lai đã xóa
KA
Xem chi tiết
TN
25 tháng 6 2017 lúc 21:20

ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng

Bình luận (0)
AN
26 tháng 6 2017 lúc 9:25

Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.

Bình luận (0)
TQ
Xem chi tiết
AH
5 tháng 8 2020 lúc 18:47

Lời giải:
Bổ sung điều kiện $a\neq b$

Ta có: $\frac{a^2+b^2}{|a-b|}\geq 4\sqrt{3}$

$\Leftrightarrow a^2+b^2\geq 4\sqrt{3}|a-b|$

$\Leftrightarrow (a-b)^2+2ab-4\sqrt{3}|a-b|\geq 0$

$\Leftrightarrow |a-b|^2+12-4\sqrt{3}|a-b|\geq 0$

$\Leftrightarrow (|a-b|-2\sqrt{3})^2\geq 0$ (luôn đúng)

Do đó ta có đpcm.

Dấu "=" xảy ra khi $|a-b|=2\sqrt{3}$ và $ab=6$ hay $(a,b)=(3+\sqrt{3}, 3-\sqrt{3})$ và hoán vị

Bình luận (0)
EC
Xem chi tiết
AH
27 tháng 1 2019 lúc 11:51

Lời giải:

Do $ab=6$ nên \(a^2+b^2=(a-b)^2+2ab=(a-b)^2+12\)

Đặt \(|a-b|=t(t>0)\). Khi đó:
\(\frac{a^2+b^2}{|a-b|}=\frac{(a-b)^2+12}{|a-b|}=\frac{t^2+12}{t}=\frac{t^2-4\sqrt{3}t+12}{t}+4\sqrt{3}\)

\(=\frac{(t-2\sqrt{3})^2}{t}+4\sqrt{3}\geq 4\sqrt{3}\) với mọi \(t>0\)

Ta có đpcm

Dấu "=" xảy ra khi \(\left\{\begin{matrix} ab=6\\ |a-b|=t=2\sqrt{3}\end{matrix}\right.\)

Bình luận (0)
H24
27 tháng 1 2019 lúc 14:42

Lời giải hoành tránh

loại trên mây có biết sai ở đâu không

nếu là lời giải của hs lớp 6 thì tạm chấp nhận

lời giải của GV chửi cho ngu như con BÒ . nếu không muôn chửi là ngu thì sửa lời giải đi

mà loại mày Akai Harumasao biết sai ở đâu mà sửa

Bình luận (0)
FF
Xem chi tiết
HD
23 tháng 1 2019 lúc 19:50

bạn lên học 24h nha , ở đó giáo viên sẽ giải cho bạn 

Bình luận (0)
IS
17 tháng 3 2020 lúc 19:19

bài này chỉ cần áp dụng bất đẳng thức cô -si là được thôi

ta có \(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\)

áp dụng bất đẳng thức cô -si  ta được :

\(\left|a-b\right|+\frac{12}{\left|a-b\right|}\ge2\sqrt{\left|a-b\right|+\frac{12}{\left|a-b\right|}}=4\sqrt{3}\)(dpcm)

Bình luận (0)
 Khách vãng lai đã xóa

em chưa hok 

Bình luận (0)
 Khách vãng lai đã xóa
BD
Xem chi tiết
PA
Xem chi tiết
ML
30 tháng 12 2015 lúc 20:14

\(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\frac{\left(\left|a-b\right|\right)^2+12}{\left|a-b\right|}\)

Đặt \(t=\left|a-b\right|>0\),

Cần CM: \(\frac{t^2+12}{t}\ge4\sqrt{3}\Leftrightarrow t^2+12\ge4\sqrt{3}t\Leftrightarrow\left(t-\sqrt{12}\right)^2\ge0\text{ (đúng }\forall t>0\text{)}\)

Bình luận (0)
H24
30 tháng 12 2015 lúc 20:05

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Bình luận (0)
NT
Xem chi tiết
NC
5 tháng 5 2020 lúc 10:11

Với a, b > 0 và ab = 6

\(\frac{a^2+b^2}{|a-b|}\ge4\sqrt{3}\)

<=> \(\left(a-b\right)^2+2ab\ge4\sqrt{3}\left|a-b\right|\)

<=> \(\left(a-b\right)^2-2\left|a-b\right|2\sqrt{3}+12\ge0\)

<=> \(\left(\left|a-b\right|-2\sqrt{3}\right)^2\ge0\)đúng 

Dấu "=" xảy ra <=> \(\left|a-b\right|=2\sqrt{3}\Leftrightarrow\left(a+b\right)^2-4ab=12\)

<=> \(a+b=6\) vì a , b > 0 

a; b là nghiệm phương trình: X^2 - 6X + 6 = 0 <=> \(X=3+\sqrt{3}\) hoặc \(X=3-\sqrt{3}\)

=> (a ; b) = ( \(3+\sqrt{3};3-\sqrt{3}\)) hoặc ( a; b ) = ( \(3-\sqrt{3};3+\sqrt{3}\)

Vậy \(\frac{a^2+b^2}{|a-b|}\ge4\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
CN
21 tháng 8 2017 lúc 8:47

mình hướng dẫn thôi được không chứ mình đá bóng bị ngã nên giờ bấm giải chi tiết không nổi

Bình luận (0)
CN
21 tháng 8 2017 lúc 8:57

thôi mình sẽ giải chi tiết luôn nhé chứ hướng dẫn khó hiểu lắm

Bình luận (0)
CN
21 tháng 8 2017 lúc 9:32

đặt cái vế trái là A. Ta có:

\(A=a\left(\frac{1}{\sqrt{ab+c^2}}+\frac{1}{\sqrt{ac+b^2}}\right)+b\left(\frac{1}{\sqrt{ab+c^2}}+\frac{1}{\sqrt{bc+a^2}}\right)+c\left(\frac{1}{\sqrt{ac+b^2}}+\frac{1}{\sqrt{bc+a^2}}\right)\)

\(\Rightarrow A\ge4\left(\frac{a}{\sqrt{ab+c^2}+\sqrt{ac+b^2}}+\frac{b}{\sqrt{ab+c^2}+\sqrt{bc+a^2}}+\frac{c}{\sqrt{ac+b^2}+\sqrt{bc+a^2}}\right)\)

Bình luận (0)