Violympic toán 9

EC

Cho a , b biết ab = 6 . Chứng minh rằng : \(\dfrac{a^2+b^2}{\left|a-b\right|}\ge4\sqrt{3}\)

AH
27 tháng 1 2019 lúc 11:51

Lời giải:

Do $ab=6$ nên \(a^2+b^2=(a-b)^2+2ab=(a-b)^2+12\)

Đặt \(|a-b|=t(t>0)\). Khi đó:
\(\frac{a^2+b^2}{|a-b|}=\frac{(a-b)^2+12}{|a-b|}=\frac{t^2+12}{t}=\frac{t^2-4\sqrt{3}t+12}{t}+4\sqrt{3}\)

\(=\frac{(t-2\sqrt{3})^2}{t}+4\sqrt{3}\geq 4\sqrt{3}\) với mọi \(t>0\)

Ta có đpcm

Dấu "=" xảy ra khi \(\left\{\begin{matrix} ab=6\\ |a-b|=t=2\sqrt{3}\end{matrix}\right.\)

Bình luận (0)
H24
27 tháng 1 2019 lúc 14:42

Lời giải hoành tránh

loại trên mây có biết sai ở đâu không

nếu là lời giải của hs lớp 6 thì tạm chấp nhận

lời giải của GV chửi cho ngu như con BÒ . nếu không muôn chửi là ngu thì sửa lời giải đi

mà loại mày Akai Harumasao biết sai ở đâu mà sửa

Bình luận (0)

Các câu hỏi tương tự
TQ
Xem chi tiết
DD
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
HC
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết