Cho P là số nguyên tố lớn hơn 5. Chứng minh: \(P^{20}-1\) chia hết cho 100
Cho p là số nguyên tố lớn hơn 5. Chứng minh: \(p^{20}-1\) chia hết cho 100
Ta có:
p20 - 1=(p4 - 1)(p16 + p12 + p8 + p4 + 1)
do p là số nguyên tố lớn hơn 5⇒ p là 1 số lẻ
p2 + 1 và p2 - 1 là các số chẵn
p4 - 1 ⋮4
p20 - 1 ⇒4
vì p là số nguyên tố lớn hơn 5⇒ p là số không chia hết cho 5
p4 - 1 ⋮5
lập luận được p16 + p12 + P8 + p4 + 1 ⋮5
⇒ p20 - 1 chia hết cho 25
mà (4;25) = 1
⇒ \(p^{20}\) - 1 chia hết cho 100
Cho P là số nguyên tố lớn hơn 5. Chứng minh: \(P^{20}-1\) chia hết cho 100
^ là mũ
ta có P^20-1=(P^4-1)(P^16+P^12+P^8+P^4+1)
do P là số nguyên tố lớn hơn 5 suy ra P là 1 số lẻ
P^2+1vaP^2-1 la cạc số chẵn
P^4-1 chia het cho 4
P^20-1 chia hết cho 4
vi p la so nguyen to lon hon 5 suy ra pla so ko chia het cho5
P^4-1 chia het cho 5
lập luận dược p^16+p^12+P^8+p^4+1chia hết cho 5
suy ra p^20-1 chia het cho 25
ma (4;25)=1
suy ra P^20-1 chia het cho 100
Cho P là số nguyên tố lớn hơn 5. Chứng minh P20-1 chia hết cho 100
các số nguyên tố có tận cùng là 1,3,7,9
vì p có có mũ là 20
nên có tận cùng là 01
\(\Rightarrow p^{20}-1⋮100\)
Bài 1: Cho số nguyên tố p lớn hơn 5 thỏa mãn p + 14 và p2 + 6 cũng là số nguyên tố. Chứng minh rằng p + 11 chia hết cho 10.
Bài 2: Cho số nguyên tố p lớn hơn 3 thỏa mãn 2p + 1 cũng là số nguyên tố. Chứng minh rằng p + 1 chia hết cho 6.
Bài 3: Cho các số nguyên tố p thỏa mãn 8p - 1 cũng là số nguyên tố. Chứng minh rằng 8p + 1 cũng là hợp số.
Bài 4: Tổng của 3 số nguyên tố bằng 1012. Tìm số nhỏ nhất trong 3 số nguyên tố đó.
mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó
cho p q là 2 số nguyên tố lớn hơn 5. Chứng minh p^4+2019q^4 chia hết cho 20
Chứng minh chia hết cho 5 ko chia trường hợp có đk ko? Giúp mk vs
Vì p,q là 2 SNT >5
Suy ra p,q là số lẻ
Suy ra p,q chia hết cho 2
Suy ra p^4,q^4 chia hết cho 4
Suy ra p^4+2019q^4 chia hết cho 4 (1)
Mặt khác: Xét 5 TH 5k, 5k+1, 5k+2, 5k+3, 5k+4
Suy ra p^4+2019q^4 chia hết cho 5 (2)
Mà (5;4)=1 (3)
Từ (1), (2) và (3) suy ra đpcm
cảm ơn bn nhiều nha nhưng cách này mk làm r mk cần cách khac nhanh hơn
1)cho ba số nguyên tố lớn hơn 3 trong đó số sau lớn hơn số trước là d dơn vị chứng minh rằng d chia hết cho 6
2)hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ lien tiếp chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6
3)cho p là số nguyên tố lớn hơn 3 biết p+2 cũng là số nguyên tố chứng minh rằng p+1 chia hết cho 6
1)cho ba số nguyên tố lớn hơn 3 trong đó số sau lớn hơn số trước là d dơn vị chứng minh rằng d chia hết cho 6
2)hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ lien tiếp chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6
3)cho p là số nguyên tố lớn hơn 3 biết p+2 cũng là số nguyên tố chứng minh rằng p+1 chia hết cho 6
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
cho p q là 2 số nguyên tố lớn hơn 5. Chứng minh p^4+2019q^4 chia hết cho 20
Chứng minh chia hết cho 5 không cần chia trường hợp có được không? Giúp mk vs
cho p là số nguyên tố lớn hơn 5 chứng minh p^20−1 chia hết cho 100
Ta có p20 - 1=(p4 - 1)(p16 + p12 + p8 + p4 + 1)
do p là số nguyên tố lớn hơn 5 suy ra p là 1 số lẻ
p2 + 1 và p2 - 1 là các số chẵn
p4 - 1 chia hết cho 4
p20 - 1 chia hết cho 4
vì p là số nguyên tố lớn hơn 5 suy ra p là số không chia hết cho 5
p4 - 1 chia hết cho 5
lập luận được p16 + p12 + P8 + p4 + 1 chia hết cho 5
suy ra p20 - 1 chia hết cho 25
mà (4;25) = 1
suy ra p20 - 1 chia hết cho 100
Nguồn: tran nguyen bao quan
Mấy bạn tham khảo mà không rõ bản chất vấn đề.
Làm sao để có \(p^4-1⋮5\) ?
Định lý Fermat nhỏ phát biểu rằng: Nếu p là SNT và a là số nguyên (a,p nguyên tố cùng nhau) thì \(a^{p-1}-1⋮p\)
Ở đây a là p còn p là 5(\(p^{5-1}-1⋮5\)).
Bạn hiểu và áp dụng cho các bài toán liên quan.