Giải phương trình
x mũ 2 - 3 l x l - 4 = 0
1) Giải hệ phương trình $\left\{\begin{array}{l}2 x+y=19 \\ 3 x-2 y=11\end{array}\right.$.
2) Giải phương trình $x^{2}+20 x-21=0$.
3) Giải phương trình $x^{4}-20 x^{2}+64=0$.
3(2x+y)-2(3x-2y)=3.19-11.2
6x+3y-6x+4y=57-22
7y=35
y=5
thay vào :
2x+y=19
2x+5=19
2x=14
x=7
2/ x2+21x-1x-21=0
x(x+21)-1(x+21)=0
(x+21)(x-1)=0
TH1 x+21=0
x=-21
TH2 x-1=0
x=1
vậy x = {-21} ; {1}
3/ x4-16x2-4x2+64=0
x2(x2-16)-4(x2-16)=0
(x2-16)-(x2-4)=0
TH1 x2-16=0
x2=16
<=>x=4;-4
TH2 x2-4=0
x2=4
x=2;-2
Bài 1 :
\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y=38\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}7x=49\\2x+y=19\end{cases}}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\2x+y=19\end{cases}}\)Thay vào x = 7 vào pt 2 ta được :
\(14+y=19\Leftrightarrow y=5\)Vậy hệ pt có một nghiệm ( x ; y ) = ( 7 ; 5 )
Bài 2 :
\(x^2+20x-21=0\)
\(\Delta=400-4\left(-21\right)=400+84=484\)
\(x_1=\frac{-20-22}{2}=-24;x_2=\frac{-20+22}{2}=1\)
Bài 3 : Đặt \(x^2=t\left(t\ge0\right)\)
\(t^2-20t+64=0\)
\(\Delta=400+4.64=656\)
\(t_1=\frac{20+4\sqrt{41}}{2}\left(tm\right);t_2=\frac{20-4\sqrt{41}}{2}\left(ktm\right)\)
Theo cách đặt : \(x^2=\frac{20+4\sqrt{41}}{2}\Rightarrow x=\sqrt{\frac{20+4\sqrt{41}}{2}}=\frac{\sqrt{20\sqrt{2}+4\sqrt{82}}}{2}\)
\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\hept{\begin{cases}6x+3y=57\\6x-4y=22\end{cases}\hept{\begin{cases}7y=35\\3x-2y=11\end{cases}}}}\)
\(\hept{\begin{cases}y=5\\3x-2.5=11\end{cases}\hept{\begin{cases}y=5\\3x=21\end{cases}\hept{\begin{cases}y=5\\x=7\end{cases}}}}\)
\(a=1,b=20;c=-21\)
\(\Delta=\left(20\right)^2-\left(4.1.-21\right)=484\)
\(\sqrt{\Delta}=\sqrt{484}=22\)
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-20+22}{2}=1\left(TM\right)\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=-21\left(TM\right)\)
\(3,x^4-20x^2+64=0\)
đặt \(x^2=a\)ta có pt
\(a^2-20a+64=0\)
\(a=1;b=-20;c=64\)
\(\Delta=\left(-20\right)^2-\left(4.1.64\right)=144\)
\(\sqrt{\Delta}=12\)
\(a_1=\frac{-b+\sqrt{\Delta}}{2a}=16\left(TM\right)\)
\(a_2=\frac{-b-\sqrt{\Delta}}{2a}=4\left(TM\right)\)
\(< =>x_1=\sqrt{16}=4\left(TM\right)\)
\(x_2=\sqrt{4}=2\left(TM\right)\)
vậy bộ n0 của pt là (\(4;2\))
Giải các phương trình sau (2x-5) mũ 3 - (3x-4) mũ 3 + (x+1) mũ 3=0
giúp mình nha mn
Đặt a = 2x - 5; b = 3x - 4 => x + 1 = b - a
Khi đó ta có pt: a3 - b3 + (b - a)3 = 0
<=> (b - a)3 - (b3 - a3) = 0
<=> b3 - a3 - b3 + a3 - 3ab(b - a)= 0
<=> 3ab(b - a) = 0 <=> a = 0 hoặc b = 0 hoặc a= b
* Với a = 0, ta có: 2x - 5 = 0 <=> x = \(\frac{5}{2}\)
* Với b = 0, ta có: 3x - 4 = 0 <=> x = \(\frac{4}{3}\)
* Với a = b, ta có: 2x - 5 = 3x - 4 <=> x = -1
Vậy S = {-1;\(\frac{4}{3}\);\(\frac{5}{2}\)}
giải các phương trình sau
1, căn 3x+1 - căn 6-x +3x2-14x-8 bằng 0
2, căn x+3 +căn mũ 3 5x+3 bằng 4
3, căn mũ 3 x-3 +căn 3x+1 bằng 2-x
(1) Phương trình nào sau đây là phương trinhc bậc nhất 1 ẩn ?
A. 5y - 1 = 0
B. √2y + 3 = 0
C. .1/x - 1 =3
D.1/2 - 4x = 0
(2) x = 1/2 là nghiệm của phương trình :
A. 2x + 1 = 0
B. 3x - 2 = x - 1
C. 2x - 1 = x
D. x mũ 2 = 1
(3) Điền vào chỗ trống (...) để có mệnh đề đúng:
a) Phương trình -5x - 1 = 0 có tập nghiệm là .....
b) Phương trình 9x mũ 2 + 16 = 0 có tập nghiệm là .....
c) Phương trình 2(x - 1) = 2(x + 1) có tập nghiệm là ...
d) Phương trình (x + 2) mũ 2 = x mũ 2 + 4x + 4 có tập nghiệm là ...
(4) Phương trình x + 9/6 - 2(x + 9)/3 = x + 9/7 có tập nghiệm là :
A. S={6} B.S={3}
C. S={-7} D.S={-9}
(2): B
(3):
a) Phương trình -5x-1=0 có tập nghiệm là \(S=\left\{\frac{-1}{5}\right\}\)
b) Phương trình \(9x^2+16=0\) có tập nghiệm là \(\varnothing\)
c) Phương trình 2(x-1)=2(x+1) có tập nghiệm là: \(x\in\varnothing\)
d) Phương trình \(\left(x+2\right)^2=x^2+4x+4\) có tập nghiệm là \(x\in R\)
(4): Không có câu nào đúng
1) Giải phương trình: $2 x^{2}+3 x-5=0$.
2) Giải hệ phương trình: $\left\{\begin{array}{l}x+2 y=1 \\ -3 x+4 y=-18\end{array}\right.$
3) Rút gọn biểu thức: $P=\left(\dfrac{1}{x+\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right): \dfrac{\sqrt{x}}{x+2 \sqrt{x}+1}$ với $x>0$.
\(2x^2+3x-5=0\)
\(< =>2x^2-2x+5x-5=0\)
\(< =>2x\left(x-1\right)+5\left(x-1\right)=0\)
\(< =>\left(x-1\right)\left(2x+5\right)=0\)
\(< =>\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
\(\hept{\begin{cases}x+2y=1\\-3x+4y=-18\end{cases}}\)
\(< =>\hept{\begin{cases}-3x-6y=-3\\-3x-6y+10y=-18\end{cases}}\)
\(< =>\hept{\begin{cases}x+2y=1\\10y=-18+3=-15\end{cases}}\)
\(< =>\hept{\begin{cases}x+2y=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x-3=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x=4\\y=-\frac{3}{2}\end{cases}}}}\)
Bài 1 : Ta có : \(\Delta=9-4\left(-5\right).2=9+40=49>0\)
\(x_1=\frac{-3-7}{4}=-\frac{11}{4};x_2=\frac{-3+7}{4}=1\)
Bài 2 :
\(\hept{\begin{cases}x+2y=1\\-3x+4y=-18\end{cases}\Leftrightarrow\hept{\begin{cases}2x+4y=2\\-3x+4y=-18\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}5x=20\\x+2y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\frac{3}{2}\end{cases}}}\)
Vậy hệ pt có một nghiệm ( x ; y ) = ( 4 ; -3/2 )
3 Giải phương trình a, l -2x + 3 l = 4 b, l x - 3 l + 2x - 5 = 0 c l 2x - 1 l + 2 = 4x
a) |-2x + 3| = 4
=> \(\orbr{\begin{cases}-2x+3=4\\-2x+3=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=-0,5\\x=3,5\end{cases}}\)
b) \(\left|x-3\right|+2x-5=0\)
=> |x - 3| = -2x + 5 (1)
ĐKXĐ \(-2x+5\ge0\Rightarrow x\le2,5\)
Khi đó (1) <=> \(\orbr{\begin{cases}x-3=-2x+5\\x-3=2x-5\end{cases}}\Rightarrow\orbr{\begin{cases}3x=8\\-x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{3}\left(\text{loại}\right)\\x=2\left(tm\right)\end{cases}}\)
Vậy x = 2
c) |2x - 1| + 2 = 4x
=> |2x - 1| = 4x - 2(1)
ĐKXĐ \(4x-2\ge0\Rightarrow x\ge\frac{1}{2}\)
Khi đó (1) <=> \(\orbr{\begin{cases}2x-1=4x-2\\2x-1=-4x+2\end{cases}}\Rightarrow\orbr{\begin{cases}-2x=-1\\6x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=0,5\\x=0,5\end{cases}}\left(tm\right)\)
Vậy x = 0,5
a, \(\left|-2x+3\right|=4\Leftrightarrow\orbr{\begin{cases}-2x+3=4\\-2x+3=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{7}{2}\end{cases}}}\)
b, \(\left|x-3\right|+2x-5=0\Leftrightarrow\left|x-3\right|=-2x+5\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=-2x+5\\-x+3=-2x+5\end{cases}\Leftrightarrow\orbr{\begin{cases}3x-8=0\\x=2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{8}{3}\\x=2\end{cases}}}\)
c, Tương tự như b
giải phương trình
x+3 / x+2 + x/2-x = 5x/ x mũ 2 - 4
\(\dfrac{x+3}{x+2}+\dfrac{x}{2-x}=\dfrac{5x}{x^2-4}\)
\(\Leftrightarrow\dfrac{x+3}{x+2}-\dfrac{x}{x-2}=\dfrac{5x}{\left(x-2\right)\left(x+2\right)}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x+2\ne0\\x-2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-2\\x\ne2\end{matrix}\right.\)
Ta có : \(\dfrac{x+3}{x+2}-\dfrac{x}{x-2}=\dfrac{5x}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{\left(x+3\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x}{\left(x-2\right)\left(x+2\right)}\)
`=> x^2 -2x +3x-6 - x^2 -2x -5x=0`
`<=>-6x -6=0`
`<=>-6x=6`
`<=>x=-1(t/m)`
=>(x+3)(x-2)-x(x+2)=5x
=>x^2+x-6-x^2-2x=5x
=>5x=-x-6
=>6x=-6
=>x=-1
1. Giải phương trình: $2 x^{2}-3 x-5=0$.
2. Giải hệ phương trình: $\left\{\begin{array}{l}x-2 y=-1 \\ 2 x+y=8\end{array}\right.$.
1. \(2x^2-3x-5=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2,5\\x=-1\end{cases}}\)
Vậy tập ngiệm của phương trình là \(S=\left\{2,5;-1\right\}\)
2x2-3x-5=0
2x2+2x-5x-5=0
2x(x+1)+5(x+1)=0
(x+1)(2x+5)=0
TH1 x+1=0 <=>x=-1
TH2 2x+5=0<=>2x=-5<=>x=-5/2
2. ta có:
2(x-2y)-(2x+y)=-1.2-8
2x-4y-2x-y=-2-8
-5y=-10
y=2
thay vào
x-2y=-1 ( với y=2)
<=> x-2.2=-1
x-4=-1
x=3
2. Có : x - 2y = -1 <=> 2x - 4y = -2 (1)
2x + y = 8 (2)
Trừ (2) cho (1) theo vế ta được :
( 2x + y ) - ( 2x - 4y ) = 8 - (-2 )
<=> 5y = 10
<=> y = 2 (3)
Thay (3) vào (2) ta được :
2x + 2 = 8
<=> 2x = 6
<=> x = 3
Vậy ( x ; y ) = ( 3 ; 2 )
1)
a) ( x +1/5) 2 + 17/25 = 26/25 ( 2 là mũ 2 )
b) ( 2 x X + 3/5 ) 2 - 9/25 = 0 ( 2 là mũ 2 ) ( x nhỏ là nhân )
c) 3 x ( 3 x X -1/2 ) 3 + 1/9 = 0 ( 3 là mũ 3 )
2) tìm X E Z để cấc phân số sau là số nguyên
a) -3/ X-1 b) -4/ 2 x X-1
c) 3 x X +7/ x-1 d) 4 x X -1 / 3-x
( x nhỏ là nhân )
cám ơn các bạn đã giải hộ mik
고맙습니다
Câu 2:
a: Để A là số nguyên thì \(x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
b: Để -4/2x-1 là số nguyên thì \(2x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2};\dfrac{5}{2};-\dfrac{3}{2}\right\}\)
c: Để 3x+7/x-1là số nguyên thì \(3x-3+10⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(x\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)
d: Để 4x-1/x-3 là số nguyên thì \(4x-12+11⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{4;2;14;-8\right\}\)