Cho hình bình hành ABCD tâm O. Chứng minh OA+OB+OC+OD= véctơ 0
Câu 1: giả sử:\(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{OC}-\overrightarrow{OB}\Leftrightarrow\overrightarrow{BA}+\overrightarrow{AD}-\overrightarrow{BA}=\overrightarrow{OC}+\overrightarrow{BO}\)
\(\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\)(luôn đúng vì ABCD lad hình bình hành)
giả sử: \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{0}\Leftrightarrow\overrightarrow{BC}-\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{BA}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BB}+\overrightarrow{DD}=\overrightarrow{0}\)(LUÔN ĐÚNG)
câu 2 :GIẢ SỬ:
\(\overrightarrow{AB}+\overrightarrow{OA}=\overrightarrow{OB}\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{OA}+\overrightarrow{BO}=\overrightarrow{0}\)(luôn đúng)
giả sử: \(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\\ \Leftrightarrow\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\)
Cho hình bình hành ABCD có O là giao điểm hai đường chéo. Chứng minh rằng:
a) \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {OD} - \overrightarrow {OC;} \)
b) \(\overrightarrow {OA} - \overrightarrow {OB} + \overrightarrow {DC} = \overrightarrow 0 \)
a) \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {BA} \)
\(\overrightarrow {OD} - \overrightarrow {OC} = \overrightarrow {CD} \)
Do ABCD là hình bình hành nên \(\overrightarrow {BA} = \overrightarrow {CD} \)
Suy ra, \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {OD} - \overrightarrow {OC} \)
b) \(\overrightarrow {OA} - \overrightarrow {OB} + \overrightarrow {DC} = (\overrightarrow {OD} - \overrightarrow {OC}) + \overrightarrow {DC} \\= \overrightarrow {CD} + \overrightarrow {DC} = \overrightarrow {CC} = \overrightarrow 0 \)
Cho 2 hình bình hành hình ABCD (tâm O) và ABEF và EH = FG = AD . Chứng minh
1.
DA - DB + DC = 0
2.
MA + MC = MB + MD (M là điểm tùy ý)
3.
OA + OB + OC + OD = AB + DA + CD + BC
4. Tứ giác CDGH là bình hành
cho hbh abcd tâm O. Chứng minh rằng:
\(\overrightarrow{OA}\) + \(\overrightarrow{OB}\)+ \(\overrightarrow{OC}\) + \(\overrightarrow{OD}\)= \(\overrightarrow{0}\)
31/ Cho hình bình hành ABCD có AC cắt BD tại O. Đáp án nào sau đây đúng:
A. OA = OB; OC = OD. B. OA = OD; OB = OC
C. OA = OC; OB = OD. D. AB = BC; CD = AD
Cho tứ giác ABCD nội tiếp đường tròn tâm O sao cho \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)
Chứng minh: ABCD là hình chữ nhật
P/s: chỉ dùng kiến thức trg bài 1 và 2 của sgk toán lớp 10 ("các định nghĩa" và "tổng và hiệu của hai véctơ")
bẹn tự vẽ hình nhé! Gọi I và J lần lượt là trung điểm của AD và BC.
Theo giả thiết: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{O}a\)
\(\Leftrightarrow2\left(\overrightarrow{OI}+\overrightarrow{OJ}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\)O,I, J thẳng hàng.(1)
\(\Delta OAD\)cân tại \(O\Rightarrow OI\perp AB\)(2)
\(\Delta OBC\)cân tại \(O\Rightarrow OJ\perp BC\)(3)
Từ 1,2,3 => AD//BC
Tương tự ta chứng minh được AB//CD
Vậy tứ giáo ABCD nội tiếp được trong đường tròn, nên tứ giác ABCD là hình chữ nhật. (đpcm)
Thanks Đặng Ngọc Quỳnh
P/s:trc chỗ (2) hình như là OI vuông góc với AD mới đúng :P
31/ Cho hình bình hành ABCD có AC cắt BD tại O. Đáp án nào sau đây đúng:
A. OA = OB; OC = OD. B. OA = OD; OB = OC
C. OA = OC; OB = OD. D. AB = BC; CD = AD
32/ Hình vuông ABCD có chu vi bằng 36cm. Diện tích của hình vuông là:
A. 36cm2 B. 81cm3 C. 1296cm2 D. 81cm2
33/ Bác An có một mảnh vườn hình chữ nhật có chiều dài 72m, chiều rộng 40m. Bác An
muốn trồng các cây ăn trái xung quanh vườn sao cho mỗi góc vườn có một cây và khoảng
cách giữa hai cây là 4m. Số cây dùng để trồng là:
A. 60 cây B. 58 cây C. 56 cây D. 54 cây
Câu 31: C
Câu 32: D
Câu 33: C
GiuCho tg ABCD biết rằng tồn tại một điểm O sao cho các véctơ OA,OB,OC,OD(có mũi tên trên đầu nha) có độ dài bằng nhau và OA+OB+OC+OD= vécto 0 ( tất cả có mũi tên trên đầu hết nha). Cmr: ABCD là hình chữ nhật.
Giúp mình với.
Cho hình bình hành ABCD có hai đường chéo AC và BD cắt nhau tại O. Gọi M, N, P, Q lần lượt là trung điểm các đoạn OA, OB, OC, OD
1) Chứng minh rằng tứ giác MNPQ là hình bình hành
2) Chứng minh rằng các tứ giác ANCQ, BPDM là các hình bình hành
1) Vì ABCD là hình bình hành
=> OA=OC, OB=OD
Ta có: OM=OA/2
OP=OC/2
Mà OA=OC => OM=OP
Cm tương tự ta được OQ=ON
Tứ giác MNPQ có OM=OP. OQ=ON
=> MNPQ là hình bình hành
2) Tứ giác ANCQ có OA=OC (cmt), OQ=ON (cmt)
Suy ra tứ giác ANCQ là hình bình hành
Tứ giác BPDM có OB=OD (cmt), OM=OP (cmt)
Suy ra tứ giác BPDM là hình bình hành