Tìm GTLN,gtnn nếu có
A=(-4x+11)^2+1/2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1:
a, Tìm GTNN của A = \(4x^2+4x+11\)
b, Tìm GTLN của B = \(5-8x-x^2\)
I zì:vv
a) Ta có: \(A=4x^2+4x+11=4x^2+4x+1=10=\left(2x+1\right)^2+10\ge10\forall x\)
Vậy MinA=10 khi \(x=-\dfrac{1}{2}\)
b) Ta có: \(B=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Vậy MaxB=21 khi x=-4
Tìm GTNN A=(x-1).(x-3)+11
Tìm GTLN B=5-4x^2+4x
a, (x-1)(x-3)+11
=x2-3x-x+3+11
=(x-2)2+10
Vì..................................
b,5-4x2+4x
=-(4x2-4x+4)+9
=-(2x-2)2+9
...........................................................
Tìm GTLN, GTNN (nếu có) của các biểu thức sau:
a) A = 4x^2 + 4x + 11
b) B= 4x - x^2 - 3
c) C = x - x^2
d) D = x^2 - 20x + 75
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
Bài 1 Cho A = 5 - 4x^2 +4 tìm GTLN
Cho B = ( x - 1 )(x-3) + 11 . Tìm GTNN
Để A = 5 - 4x2 + 4 nhận giá trị lớn nhất
=> 4x2 nhỏ nhất mà x2 ≥ 0 ∀ x
=> 4x2 ≥ 0 mà 4x2 nhỏ nhất => 4x2 = 0
<=> x2 = 0 => x = 0
Khi đó : A = 5 - 0 + 4 = 9
Vậy A nhận giá trị nhỏ nhất là 9 <=> x = 0
Để ( x - 1 ) . ( x - 3 ) + 11 nhận giá trị nhỏ nhất
=> x - 1 và x - 3 trái dấu mà x - 1 > x - 3 ∀ x
\(\Rightarrow\orbr{\begin{cases}x-1>0\\x-3< 0\end{cases}}\Rightarrow\orbr{\begin{cases}x>-1\\x< 3\end{cases}}\)
=> x ∈ { 0 ; 1 ; 2 }
Ta xét các 3 trường hợp :
+) x = 0 => B = 14
+) x = 1 => B = 11
+) x = 2 => B = 10
Vậy B nhận giá trị nhỏ nhất là 10 <=> x = 2
Sơn ( ✎﹏IDΣΛ亗 ) chịu :) làm kiểu đấy không ăn gạch đá vào mặt mới lạ=)
A = 5 - 4x2 + 4 = -4x2 + 9 ≤ 9 ∀ x
Dấu "=" xảy ra <=> x = 0 => MaxA = 9
B = ( x - 1 )( x - 3 ) + 11 = x2 - 4x + 3 + 11 = ( x2 - 4x + 4 ) + 10 = ( x - 2 )2 + 10 ≥ 10 ∀ x
Dấu "=" xảy ra <=> x = 2 => MaxB = 10
a, Tìm GTNN: A = \(\dfrac{x^2-2x+2013}{x^2}\) ; x>0
b, Tìm GTLN và GTNN của: B = \(\dfrac{4x+1}{4x^2+2}\)
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
Tìm GTNN và GTLN nếu có của các biểu thức
\(A=\dfrac{2x^2-2x+5}{\left(x+1\right)^2}\)
\(B=\dfrac{4x^2+x+4}{x^2+x+1}\)
Biểu thức nào em?
Bài 11. Tìm GTNN của
a/ A= x^2 – 4x + 2
b/ B= 4x^2 + 4x – 1
c/ C= x^2 + x
Bài 12. Tìm GTLN của
a) A= 2- 6x – 9x^2
b) B= (5-x)(3+x)
c/ = - 2x^2 + 4x
MN GIÚP MIK NHANH VS Ạ